BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 38025700)

  • 1. In-silico study of antisense oligonucleotide antibiotics.
    Chen ES; Ho ES
    PeerJ; 2023; 11():e16343. PubMed ID: 38025700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Antisense Oligonucleotides to Disrupt Small RNA Regulated Antibiotic Resistance via a Cell-Free Transcription-Translation Platform.
    Tsai MJ; Zambrano RAI; Susas JL; Silva L; Takahashi MK
    ACS Synth Biol; 2023 Aug; 12(8):2245-2251. PubMed ID: 37540186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordination-Driven Self-Assembly of Metal Ion-Antisense Oligonucleotide Nanohybrids for Chronic Bacterial Infection Therapy.
    Li A; Zhang Y; Wan L; Peng R; Zhang X; Guo Q; Xu S; Qiao D; Zheng P; Li N; Zhu W; Pan Q
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28041-28055. PubMed ID: 38767982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disarmed anthrax toxin delivers antisense oligonucleotides and siRNA with high efficiency and low toxicity.
    Dyer PDR; Shepherd TR; Gollings AS; Shorter SA; Gorringe-Pattrick MAM; Tang CK; Cattoz BN; Baillie L; Griffiths PC; Richardson SCW
    J Control Release; 2015 Dec; 220(Pt A):316-328. PubMed ID: 26546271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting glmS Ribozyme with Chimeric Antisense Oligonucleotides for Antibacterial Drug Development.
    Traykovska M; Popova KB; Penchovsky R
    ACS Synth Biol; 2021 Nov; 10(11):3167-3176. PubMed ID: 34734706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-sensitivity quantification of antisense oligonucleotides for pharmacokinetic characterization.
    Mahajan S; Zhao H; Kovacina K; Lachacz E; Hoxha S; Chan J; Liang M
    Bioanalysis; 2022 May; 14(9):603-613. PubMed ID: 35578971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames.
    Liang XH; Shen W; Sun H; Migawa MT; Vickers TA; Crooke ST
    Nat Biotechnol; 2016 Aug; 34(8):875-80. PubMed ID: 27398791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in therapeutic bacterial antisense biotechnology.
    Hegarty JP; Stewart DB
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1055-1065. PubMed ID: 29209794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translation can affect the antisense activity of RNase H1-dependent oligonucleotides targeting mRNAs.
    Liang XH; Nichols JG; Sun H; Crooke ST
    Nucleic Acids Res; 2018 Jan; 46(1):293-313. PubMed ID: 29165591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimated number of off-target candidate sites for antisense oligonucleotides in human mRNA sequences.
    Yoshida T; Naito Y; Sasaki K; Uchida E; Sato Y; Naito M; Kawanishi T; Obika S; Inoue T
    Genes Cells; 2018 Jun; 23(6):448-455. PubMed ID: 29667281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General and Specific Cytotoxicity of Chimeric Antisense Oligonucleotides in Bacterial Cells and Human Cell Lines.
    Popova KB; Penchovsky R
    Antibiotics (Basel); 2024 Jan; 13(2):. PubMed ID: 38391508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel integrated strategy (full length gene targeting) for mRNA accessible site tagging combined with microarray hybridization/RNase H cleavage to screen effective antisense oligonucleotides.
    Sun Y; Duan M; Lin R; Wang D; Li C; Bo X; Wang S
    Mol Vis; 2006 Nov; 12():1364-71. PubMed ID: 17149362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomineralized Cascade Enzyme-Encapsulated ZIF-8 Nanoparticles Combined with Antisense Oligonucleotides for Drug-Resistant Bacteria Treatment.
    Zhang Y; Lai L; Liu Y; Chen B; Yao J; Zheng P; Pan Q; Zhu W
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6453-6464. PubMed ID: 35094518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of Off-Target Effects of Gapmer Antisense Oligonucleotides by Oligonucleotide Extension.
    Yasuhara H; Yoshida T; Sasaki K; Obika S; Inoue T
    Mol Diagn Ther; 2022 Jan; 26(1):117-127. PubMed ID: 34994962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antisense oligonucleotide targeting CD39 improves anti-tumor T cell immunity.
    Kashyap AS; Thelemann T; Klar R; Kallert SM; Festag J; Buchi M; Hinterwimmer L; Schell M; Michel S; Jaschinski F; Zippelius A
    J Immunother Cancer; 2019 Mar; 7(1):67. PubMed ID: 30871609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Antisense Oligonucleotides as Antibacterial Agents That Target FMN Riboswitches and Inhibit the Growth of
    Traykovska M; Penchovsky R
    ACS Synth Biol; 2022 May; 11(5):1845-1855. PubMed ID: 35440139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorothioate Antisense Oligonucleotides Bind P-Body Proteins and Mediate P-Body Assembly.
    Wang Y; Shen W; Liang XH; Crooke ST
    Nucleic Acid Ther; 2019 Dec; 29(6):343-358. PubMed ID: 31429620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development.
    Pavlova N; Traykovska M; Penchovsky R
    Antibiotics (Basel); 2023 Nov; 12(11):. PubMed ID: 37998809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of combinations of gapmer antisense oligonucleotides on the target reduction.
    Yanagidaira M; Yoshioka K; Nagata T; Nakao S; Miyata K; Yokota T
    Mol Biol Rep; 2023 Apr; 50(4):3539-3546. PubMed ID: 36787053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the Activity of Antisense Oligonucleotides Targeting Multiple Genes by RNA-Sequencing.
    Michel S; Klar R; Jaschinski F
    Nucleic Acid Ther; 2021 Dec; 31(6):427-435. PubMed ID: 34251864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.