These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 38025848)

  • 1. Recent advances in biopolymers-based carbon materials for supercapacitors.
    Li H; Li Y; Zhu S; Li Y; Zada I; Li Y
    RSC Adv; 2023 Nov; 13(47):33318-33335. PubMed ID: 38025848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biopolymers-Derived Materials for Supercapacitors: Recent Trends, Challenges, and Future Prospects.
    Appiah ES; Dzikunu P; Mahadeen N; Ampong DN; Mensah-Darkwa K; Kumar A; Gupta RK; Adom-Asamoah M
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance electrode materials of heteroatom-doped lignin-based carbon materials for supercapacitor applications.
    Zhang C; Chen N; Zhao M; Zhong W; Wu WJ; Jin YC
    Int J Biol Macromol; 2024 Jul; 273(Pt 1):133017. PubMed ID: 38876242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research Progress in MnO
    Zhang QZ; Zhang D; Miao ZC; Zhang XL; Chou SL
    Small; 2018 Jun; 14(24):e1702883. PubMed ID: 29707887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
    Liu L; Niu Z; Chen J
    Chem Soc Rev; 2016 Jul; 45(15):4340-63. PubMed ID: 27263796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Mass-Loading Biomass-Based Porous Carbon Electrodes for Supercapacitors: Review and Perspectives.
    Yang X; Lv T; Qiu J
    Small; 2023 Jun; 19(22):e2300336. PubMed ID: 36840663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research progress in the preparation of lignin-based carbon nanofibers for supercapacitors using electrospinning technology: A review.
    Cao Q; Zhu H; Xu J; Zhang M; Xiao T; Xu S; Du B
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):133037. PubMed ID: 38897523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Biopolymer-Based Hydrogel Electrolytes for Flexible Supercapacitors.
    Ding J; Yang Y; Poisson J; He Y; Zhang H; Zhang Y; Bao Y; Chen S; Chen YM; Zhang K
    ACS Energy Lett; 2024 Apr; 9(4):1803-1825. PubMed ID: 38633997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in perovskite oxides as electrode materials for supercapacitors.
    Cao Y; Liang J; Li X; Yue L; Liu Q; Lu S; Asiri AM; Hu J; Luo Y; Sun X
    Chem Commun (Camb); 2021 Mar; 57(19):2343-2355. PubMed ID: 33595045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoporous Carbon Derived from Green Material by an Ordered Activation Method and Its High Capacitance for Energy Storage.
    Lu Q; Zhou S; Zhang Y; Chen M; Li B; Wei H; Zhang D; Zhang J; Liu Q
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32486219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass-Derived Carbon: A Value-Added Journey Towards Constructing High-Energy Supercapacitors in an Asymmetric Fashion.
    Divya ML; Natarajan S; Lee YS; Aravindan V
    ChemSusChem; 2019 Oct; 12(19):4353-4382. PubMed ID: 31309724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry.
    Chen C; Hu L
    Acc Chem Res; 2018 Dec; 51(12):3154-3165. PubMed ID: 30299086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Template-free synthesis of renewable macroporous carbon via yeast cells for high-performance supercapacitor electrode materials.
    Sun H; He W; Zong C; Lu L
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2261-8. PubMed ID: 23452310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different metal cation-doped MnO
    Li X; Lin X; Yang N; Li X; Zhang W; Komarneni S
    J Colloid Interface Sci; 2023 Nov; 649():731-740. PubMed ID: 37385038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable lignin precursors for tailored porous carbon-based supercapacitor electrodes.
    Beaucamp A; Muddasar M; Crawford T; Collins MN; Culebras M
    Int J Biol Macromol; 2022 Nov; 221():1142-1149. PubMed ID: 36115449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric Supercapacitor Electrodes and Devices.
    Choudhary N; Li C; Moore J; Nagaiah N; Zhai L; Jung Y; Thomas J
    Adv Mater; 2017 Jun; 29(21):. PubMed ID: 28244158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors.
    Islam S; Mia MM; Shah SS; Naher S; Shaikh MN; Aziz MA; Ahammad AJS
    Chem Rec; 2022 Jul; 22(7):e202200013. PubMed ID: 35313076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretchable Supercapacitors: From Materials and Structures to Devices.
    Shao G; Yu R; Chen N; Ye M; Liu XY
    Small Methods; 2021 Jan; 5(1):e2000853. PubMed ID: 34927805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose-Derived Nanostructures as Sustainable Biomass for Supercapacitors: A Review.
    Ji SM; Kumar A
    Polymers (Basel); 2022 Jan; 14(1):. PubMed ID: 35012192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Advanced Multi-Porous Carbon Nanofibers for High-Performance Capacitive Electrodes in Supercapacitors.
    Zhao D; Wang H; Bai Y; Yang H; Song H; Li B
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.