These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 38026148)

  • 41. A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design.
    Anderson A; Richburg C; Czerniecki J; Aubin P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():360-367. PubMed ID: 31374656
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Methodology for Selecting the Appropriate Electric Motor for Robotic Modular Systems for Lower Extremities.
    Kavalieros D; Kapothanasis E; Kakarountas A; Loukopoulos T
    Healthcare (Basel); 2022 Oct; 10(10):. PubMed ID: 36292506
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation.
    Brauchle D; Vukelić M; Bauer R; Gharabaghi A
    Front Hum Neurosci; 2015; 9():564. PubMed ID: 26528168
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R; Cahouet V; Papaxanthis C
    Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lunar and mars gravity induce similar changes in spinal motor control as microgravity.
    Swanenburg J; Easthope CA; Meinke A; Langenfeld A; Green DA; Schweinhardt P
    Front Physiol; 2023; 14():1196929. PubMed ID: 37565140
    [No Abstract]   [Full Text] [Related]  

  • 46. Compensating for intersegmental dynamics across the shoulder, elbow, and wrist joints during feedforward and feedback control.
    Maeda RS; Cluff T; Gribble PL; Pruszynski JA
    J Neurophysiol; 2017 Oct; 118(4):1984-1997. PubMed ID: 28701534
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton.
    Zhang D; Ren Y; Gui K; Jia J; Xu W
    Front Neurosci; 2017; 11():725. PubMed ID: 29311798
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction torque contributes to planar reaching at slow speed.
    Yamasaki H; Tagami Y; Fujisawa H; Hoshi F; Nagasaki H
    Biomed Eng Online; 2008 Oct; 7():27. PubMed ID: 18940016
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Closed-Loop Task Difficulty Adaptation during Virtual Reality Reach-to-Grasp Training Assisted with an Exoskeleton for Stroke Rehabilitation.
    Grimm F; Naros G; Gharabaghi A
    Front Neurosci; 2016; 10():518. PubMed ID: 27895550
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cortical and corticospinal output modulations during reaching movements with varying directions and magnitudes of interaction torques.
    Asmussen MJ; Bailey AZ; Nelson AJ
    Neuroscience; 2015 Dec; 311():268-83. PubMed ID: 26525892
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
    Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J
    J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Individuals With Hemiparetic Stroke Accurately Match Torques They Generate About Each Elbow Joint.
    Cai NM; Drogos JM; Dewald JPA; Gurari N
    Front Neurosci; 2019; 13():1293. PubMed ID: 31849597
    [No Abstract]   [Full Text] [Related]  

  • 53. A Single-Session Preliminary Evaluation of an Affordable BCI-Controlled Arm Exoskeleton and Motor-Proprioception Platform.
    Elnady AM; Zhang X; Xiao ZG; Yong X; Randhawa BK; Boyd L; Menon C
    Front Hum Neurosci; 2015; 9():168. PubMed ID: 25870554
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Muscle synergies of multidirectional postural control in astronauts on Earth after a long-term stay in space.
    Hagio S; Ishihara A; Terada M; Tanabe H; Kibushi B; Higashibata A; Yamada S; Furukawa S; Mukai C; Ishioka N; Kouzaki M
    J Neurophysiol; 2022 May; 127(5):1230-1239. PubMed ID: 35353615
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetic and kinematic adaptation to anisotropic load.
    Shemmell J; Corcos DM; Hasan Z
    Exp Brain Res; 2009 Jan; 192(1):1-8. PubMed ID: 18726588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effort matching between arms depends on relative limb geometry and personal control.
    Logan LM; Semrau JA; Cluff T; Scott SH; Dukelow SP
    J Neurophysiol; 2019 Feb; 121(2):459-470. PubMed ID: 30540499
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simulation of gait and gait initiation associated with body oscillating behavior in the gravity environment on the moon, mars and Phobos.
    Brenière Y
    Biol Cybern; 2001 Apr; 84(4):261-7. PubMed ID: 11324337
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Can 3D bioprinting be a key for exploratory missions and human settlements on the Moon and Mars?
    Cubo-Mateo N; Podhajsky S; Knickmann D; Slenzka K; Ghidini T; Gelinsky M
    Biofabrication; 2020 Sep; 12(4):043001. PubMed ID: 32975214
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantifying anti-gravity torques in the design of a powered exoskeleton.
    Ragonesi D; Agrawal S; Sample W; Rahman T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7458-61. PubMed ID: 22256063
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effective utilization of gravity during arm downswing in keystrokes by expert pianists.
    Furuya S; Osu R; Kinoshita H
    Neuroscience; 2009 Dec; 164(2):822-31. PubMed ID: 19698766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.