These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38026470)

  • 1. LiDAR Is Effective in Characterizing Vine Growth and Detecting Associated Genetic Loci.
    Chedid E; Avia K; Dumas V; Ley L; Reibel N; Butterlin G; Soma M; Lopez-Lozano R; Baret F; Merdinoglu D; Duchêne É
    Plant Phenomics; 2023; 5():0116. PubMed ID: 38026470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast Phenomics in Vineyards: Development of GRover, the Grapevine Rover, and LiDAR for Assessing Grapevine Traits in the Field.
    Siebers MH; Edwards EJ; Jimenez-Berni JA; Thomas MR; Salim M; Walker RR
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30177637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip.
    Houel C; Chatbanyong R; Doligez A; Rienth M; Foria S; Luchaire N; Roux C; Adivèze A; Lopez G; Farnos M; Pellegrino A; This P; Romieu C; Torregrosa L
    BMC Plant Biol; 2015 Aug; 15():205. PubMed ID: 26283631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic variations of acidity in grape berries are controlled by the interplay between organic acids and potassium.
    Duchêne É; Dumas V; Butterlin G; Jaegli N; Rustenholz C; Chauveau A; Bérard A; Le Paslier MC; Gaillard I; Merdinoglu D
    Theor Appl Genet; 2020 Mar; 133(3):993-1008. PubMed ID: 31932953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LiDARPheno - A Low-Cost LiDAR-Based 3D Scanning System for Leaf Morphological Trait Extraction.
    Panjvani K; Dinh AV; Wahid KA
    Front Plant Sci; 2019; 10():147. PubMed ID: 30815008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Trait Locus Analysis of Leaf Morphology Indicates Conserved Shape Loci in Grapevine.
    Demmings EM; Williams BR; Lee CR; Barba P; Yang S; Hwang CF; Reisch BI; Chitwood DH; Londo JP
    Front Plant Sci; 2019; 10():1373. PubMed ID: 31803199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MECS-VINE
    Gatti M; Dosso P; Maurino M; Merli MC; Bernizzoni F; José Pirez F; Platè B; Bertuzzi GC; Poni S
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27898049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deployment of Lidar from a Ground Platform: Customizing a Low-Cost, Information-Rich and User-Friendly Application for Field Phenomics Research.
    Heun JT; Attalah S; French AN; Lehner KR; McKay JK; Mullen JL; Ottman MJ; Andrade-Sanchez P
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting seasonal change of broad-leaved woody canopy leaf area density profile using 3D portable LIDAR imaging.
    Hosoi F; Omasa K
    Funct Plant Biol; 2009 Nov; 36(11):998-1005. PubMed ID: 32688711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and validation of QTL for Sclerotinia midstalk rot resistance in sunflower by selective genotyping.
    Micic Z; Hahn V; Bauer E; Melchinger AE; Knapp SJ; Tang S; Schön CC
    Theor Appl Genet; 2005 Jul; 111(2):233-42. PubMed ID: 15947909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic architecture of spring and autumn phenology in Salix.
    Ghelardini L; Berlin S; Weih M; Lagercrantz U; Gyllenstrand N; Rönnberg-Wästljung AC
    BMC Plant Biol; 2014 Jan; 14():31. PubMed ID: 24438179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome.
    Sivasakthi K; Thudi M; Tharanya M; Kale SM; Kholová J; Halime MH; Jaganathan D; Baddam R; Thirunalasundari T; Gaur PM; Varshney RK; Vadez V
    BMC Plant Biol; 2018 Feb; 18(1):29. PubMed ID: 29409451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-Ground Vineyard Reconstruction Using a LiDAR-Based Automated System.
    Moreno H; Valero C; Bengochea-Guevara JM; Ribeiro Á; Garrido-Izard M; Andújar D
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-scale high-throughput phenotyping of apple architectural and functional traits in orchard reveals genotypic variability under contrasted watering regimes.
    Coupel-Ledru A; Pallas B; Delalande M; Boudon F; Carrié E; Martinez S; Regnard JL; Costes E
    Hortic Res; 2019; 6():52. PubMed ID: 31044079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of grapevine root system architecture and loci associated gene networks.
    Alahakoon D; Fennell A
    Front Plant Sci; 2022; 13():1083374. PubMed ID: 36816477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating Biomass and Canopy Height With LiDAR for Field Crop Breeding.
    Walter JDC; Edwards J; McDonald G; Kuchel H
    Front Plant Sci; 2019; 10():1145. PubMed ID: 31611889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a high-density genetic map and detection of a major QTL of resistance to powdery mildew (Erysiphe necator Sch.) in Caucasian grapes (Vitis vinifera L.).
    Possamai T; Wiedemann-Merdinoglu S; Merdinoglu D; Migliaro D; De Mori G; Cipriani G; Velasco R; Testolin R
    BMC Plant Biol; 2021 Nov; 21(1):528. PubMed ID: 34763660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
    Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C
    Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and morphological responses of different spring barley genotypes to water deficit and associated QTLs.
    Moualeu-Ngangué D; Dolch C; Schneider M; Léon J; Uptmoor R; Stützel H
    PLoS One; 2020; 15(8):e0237834. PubMed ID: 32853269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages.
    Duchêne E; Butterlin G; Dumas V; Merdinoglu D
    Theor Appl Genet; 2012 Mar; 124(4):623-35. PubMed ID: 22052019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.