BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 38026519)

  • 1. Strategies and Progress of Raman Technologies for Cellular Uptake Analysis of the Drug Delivery Systems.
    Liu Y; Li M; Liu H; Kang C; Yu X
    Int J Nanomedicine; 2023; 18():6883-6900. PubMed ID: 38026519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced Raman scattering investigation of targeted delivery and controlled release of gemcitabine.
    Santiago T; DeVaux RS; Kurzatkowska K; Espinal R; Herschkowitz JI; Hepel M
    Int J Nanomedicine; 2017; 12():7763-7776. PubMed ID: 29123391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman microscopy for cellular investigations--From single cell imaging to drug carrier uptake visualization.
    Kann B; Offerhaus HL; Windbergs M; Otto C
    Adv Drug Deliv Rev; 2015 Jul; 89():71-90. PubMed ID: 25728764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold Nanoparticles in Single-Cell Analysis for Surface Enhanced Raman Scattering.
    Altunbek M; Kuku G; Culha M
    Molecules; 2016 Nov; 21(12):. PubMed ID: 27897986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-Nanoparticle Interactions at (Sub)-Nanometer Resolution Analyzed by Electron Microscopy and Correlative Coherent Anti-Stokes Raman Scattering.
    Saarinen J; Gütter F; Lindman M; Agopov M; Fraser-Miller SJ; Scherließ R; Jokitalo E; Santos HA; Peltonen L; Isomäki A; Strachan CJ
    Biotechnol J; 2019 Apr; 14(4):e1800413. PubMed ID: 30350922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectroscopy in pharmaceutical product design.
    Paudel A; Raijada D; Rantanen J
    Adv Drug Deliv Rev; 2015 Jul; 89():3-20. PubMed ID: 25868453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification and biological evaluation of Zn
    Al-Madani H; Yang Y; Refat M; He Q; Peng H; Wu A; Yang F
    J Mater Chem B; 2024 Feb; 12(6):1636-1651. PubMed ID: 38270595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags.
    Qian X; Peng XH; Ansari DO; Yin-Goen Q; Chen GZ; Shin DM; Yang L; Young AN; Wang MD; Nie S
    Nat Biotechnol; 2008 Jan; 26(1):83-90. PubMed ID: 18157119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Drug Dynamics Visualized by Alkyne-Tagged Plasmonic-Enhanced Raman Microscopy.
    Koike K; Bando K; Ando J; Yamakoshi H; Terayama N; Dodo K; Smith NI; Sodeoka M; Fujita K
    ACS Nano; 2020 Nov; 14(11):15032-15041. PubMed ID: 33079538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting the nanoparticle plasmon effect: observing drug delivery dynamics in single cells via Raman/fluorescence imaging spectroscopy.
    Kang B; Afifi MM; Austin LA; El-Sayed MA
    ACS Nano; 2013 Aug; 7(8):7420-7. PubMed ID: 23909658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman spectral imaging of intracellular uptake of β-carotene loaded poly(D,L-lactide-co-glycolide) nanoparticles.
    Matthäus C; Schubert S; Schmitt M; Krafft C; Dietzek B; Schubert US; Popp J
    Chemphyschem; 2013 Jan; 14(1):155-61. PubMed ID: 23065799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Frequency Raman Scattering Spectroscopy as an Accessible Approach to Understand Drug Solubilization in Milk-Based Formulations during Digestion.
    Salim M; Fraser-Miller SJ; Be Rziņš KR; Sutton JJ; Ramirez G; Clulow AJ; Hawley A; Beilles S; Gordon KC; Boyd BJ
    Mol Pharm; 2020 Mar; 17(3):885-899. PubMed ID: 32011151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High throughput single nanoparticle spectroscopy.
    Sebba DS; Watson DA; Nolan JP
    ACS Nano; 2009 Jun; 3(6):1477-84. PubMed ID: 19472989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman mapping of pharmaceuticals.
    Gordon KC; McGoverin CM
    Int J Pharm; 2011 Sep; 417(1-2):151-62. PubMed ID: 21194560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thorough characterization of a Self-Emulsifying Drug Delivery System with Raman hyperspectral imaging: a case study.
    Sacré PY; Netchacovitch L; De Bleye C; Chavez PF; Servais C; Klinkenberg R; Streel B; Hubert P; Ziemons E
    Int J Pharm; 2015 Apr; 484(1-2):85-94. PubMed ID: 25721686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery.
    Chavanpatil MD; Khdair A; Panyam J
    J Nanosci Nanotechnol; 2006; 6(9-10):2651-63. PubMed ID: 17048473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticles in drug delivery: mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity.
    Cooper DL; Conder CM; Harirforoosh S
    Expert Opin Drug Deliv; 2014 Oct; 11(10):1661-80. PubMed ID: 25054316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman microscopy for noninvasive imaging of pharmaceutical nanocarriers: intracellular distribution of cationic liposomes of different composition.
    Chernenko T; Sawant RR; Miljkovic M; Quintero L; Diem M; Torchilin V
    Mol Pharm; 2012 Apr; 9(4):930-6. PubMed ID: 22376068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development.
    Gala U; Chauhan H
    Expert Opin Drug Discov; 2015 Feb; 10(2):187-206. PubMed ID: 25399993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.