These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 38026519)

  • 1. Strategies and Progress of Raman Technologies for Cellular Uptake Analysis of the Drug Delivery Systems.
    Liu Y; Li M; Liu H; Kang C; Yu X
    Int J Nanomedicine; 2023; 18():6883-6900. PubMed ID: 38026519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced Raman scattering investigation of targeted delivery and controlled release of gemcitabine.
    Santiago T; DeVaux RS; Kurzatkowska K; Espinal R; Herschkowitz JI; Hepel M
    Int J Nanomedicine; 2017; 12():7763-7776. PubMed ID: 29123391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman microscopy for cellular investigations--From single cell imaging to drug carrier uptake visualization.
    Kann B; Offerhaus HL; Windbergs M; Otto C
    Adv Drug Deliv Rev; 2015 Jul; 89():71-90. PubMed ID: 25728764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold Nanoparticles in Single-Cell Analysis for Surface Enhanced Raman Scattering.
    Altunbek M; Kuku G; Culha M
    Molecules; 2016 Nov; 21(12):. PubMed ID: 27897986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-Nanoparticle Interactions at (Sub)-Nanometer Resolution Analyzed by Electron Microscopy and Correlative Coherent Anti-Stokes Raman Scattering.
    Saarinen J; Gütter F; Lindman M; Agopov M; Fraser-Miller SJ; Scherließ R; Jokitalo E; Santos HA; Peltonen L; Isomäki A; Strachan CJ
    Biotechnol J; 2019 Apr; 14(4):e1800413. PubMed ID: 30350922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectroscopy in pharmaceutical product design.
    Paudel A; Raijada D; Rantanen J
    Adv Drug Deliv Rev; 2015 Jul; 89():3-20. PubMed ID: 25868453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification and biological evaluation of Zn
    Al-Madani H; Yang Y; Refat M; He Q; Peng H; Wu A; Yang F
    J Mater Chem B; 2024 Feb; 12(6):1636-1651. PubMed ID: 38270595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags.
    Qian X; Peng XH; Ansari DO; Yin-Goen Q; Chen GZ; Shin DM; Yang L; Young AN; Wang MD; Nie S
    Nat Biotechnol; 2008 Jan; 26(1):83-90. PubMed ID: 18157119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Drug Dynamics Visualized by Alkyne-Tagged Plasmonic-Enhanced Raman Microscopy.
    Koike K; Bando K; Ando J; Yamakoshi H; Terayama N; Dodo K; Smith NI; Sodeoka M; Fujita K
    ACS Nano; 2020 Nov; 14(11):15032-15041. PubMed ID: 33079538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting the nanoparticle plasmon effect: observing drug delivery dynamics in single cells via Raman/fluorescence imaging spectroscopy.
    Kang B; Afifi MM; Austin LA; El-Sayed MA
    ACS Nano; 2013 Aug; 7(8):7420-7. PubMed ID: 23909658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman spectral imaging of intracellular uptake of β-carotene loaded poly(D,L-lactide-co-glycolide) nanoparticles.
    Matthäus C; Schubert S; Schmitt M; Krafft C; Dietzek B; Schubert US; Popp J
    Chemphyschem; 2013 Jan; 14(1):155-61. PubMed ID: 23065799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Frequency Raman Scattering Spectroscopy as an Accessible Approach to Understand Drug Solubilization in Milk-Based Formulations during Digestion.
    Salim M; Fraser-Miller SJ; Be Rziņš KR; Sutton JJ; Ramirez G; Clulow AJ; Hawley A; Beilles S; Gordon KC; Boyd BJ
    Mol Pharm; 2020 Mar; 17(3):885-899. PubMed ID: 32011151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High throughput single nanoparticle spectroscopy.
    Sebba DS; Watson DA; Nolan JP
    ACS Nano; 2009 Jun; 3(6):1477-84. PubMed ID: 19472989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman mapping of pharmaceuticals.
    Gordon KC; McGoverin CM
    Int J Pharm; 2011 Sep; 417(1-2):151-62. PubMed ID: 21194560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thorough characterization of a Self-Emulsifying Drug Delivery System with Raman hyperspectral imaging: a case study.
    Sacré PY; Netchacovitch L; De Bleye C; Chavez PF; Servais C; Klinkenberg R; Streel B; Hubert P; Ziemons E
    Int J Pharm; 2015 Apr; 484(1-2):85-94. PubMed ID: 25721686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery.
    Chavanpatil MD; Khdair A; Panyam J
    J Nanosci Nanotechnol; 2006; 6(9-10):2651-63. PubMed ID: 17048473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticles in drug delivery: mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity.
    Cooper DL; Conder CM; Harirforoosh S
    Expert Opin Drug Deliv; 2014 Oct; 11(10):1661-80. PubMed ID: 25054316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman microscopy for noninvasive imaging of pharmaceutical nanocarriers: intracellular distribution of cationic liposomes of different composition.
    Chernenko T; Sawant RR; Miljkovic M; Quintero L; Diem M; Torchilin V
    Mol Pharm; 2012 Apr; 9(4):930-6. PubMed ID: 22376068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development.
    Gala U; Chauhan H
    Expert Opin Drug Discov; 2015 Feb; 10(2):187-206. PubMed ID: 25399993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.