These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 38026519)
21. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags. Chen M; Zhang L; Yang B; Gao M; Zhang X Anal Bioanal Chem; 2018 Mar; 410(8):2203-2210. PubMed ID: 29396584 [TBL] [Abstract][Full Text] [Related]
22. Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy. Huang J; Zong C; Shen H; Liu M; Chen B; Ren B; Zhang Z Small; 2012 Aug; 8(16):2577-84. PubMed ID: 22641430 [TBL] [Abstract][Full Text] [Related]
23. Label-Free Tracking of Nanoprodrug Cellular Uptake and Metabolism Using Raman and Autofluorescence Imaging. Machida M; Sugimura T; Kajimoto S; Taemaitree F; Koseki Y; Kasai H; Nakabayashi T J Phys Chem B; 2023 May; 127(17):3851-3860. PubMed ID: 37094294 [TBL] [Abstract][Full Text] [Related]
24. A Rational Designed Bioorthogonal Surface-Enhanced Raman Scattering Nanoprobe for Quantitatively Visualizing Endogenous Hydrogen Sulfide in Single Living Cells. Zhong Q; Zhang R; Yang B; Tian T; Zhang K; Liu B ACS Sens; 2022 Mar; 7(3):893-899. PubMed ID: 35213807 [TBL] [Abstract][Full Text] [Related]
25. Nucleic Acid Probes in Bio-Imaging and Diagnostics: Recent Advances in ODN-Based Fluorescent and Surface-Enhanced Raman Scattering Nanoparticle and Nanostructured Systems. Sardaru MC; Marangoci NL; Palumbo R; Roviello GN; Rotaru A Molecules; 2023 Apr; 28(8):. PubMed ID: 37110795 [TBL] [Abstract][Full Text] [Related]
26. Smart surface-enhanced Raman scattering traceable drug delivery systems. Liu L; Tang Y; Dai S; Kleitz F; Qiao SZ Nanoscale; 2016 Jul; 8(25):12803-11. PubMed ID: 27297745 [TBL] [Abstract][Full Text] [Related]
27. Development of nanoparticle drug-delivery systems for the inner ear. An X; Zha D Nanomedicine (Lond); 2020 Aug; 15(20):1981-1993. PubMed ID: 32605499 [TBL] [Abstract][Full Text] [Related]
28. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases. Sims LB; Miller HA; Halwes ME; Steinbach-Rankins JM; Frieboes HB Eur J Pharm Biopharm; 2019 May; 138():37-47. PubMed ID: 30195726 [TBL] [Abstract][Full Text] [Related]
29. Research Progress of Raman Spectroscopy in Drug Analysis. Wang WT; Zhang H; Yuan Y; Guo Y; He SX AAPS PharmSciTech; 2018 Oct; 19(7):2921-2928. PubMed ID: 30091063 [TBL] [Abstract][Full Text] [Related]
30. Sensitive determination of dopamine levels via surface-enhanced Raman scattering of Ag nanoparticle dimers. Yu X; He X; Yang T; Zhao L; Chen Q; Zhang S; Chen J; Xu J Int J Nanomedicine; 2018; 13():2337-2347. PubMed ID: 29713165 [TBL] [Abstract][Full Text] [Related]
31. Molecular and Biocompatibility Characterization of Red Blood Cell Membrane Targeted and Cell-Penetrating-Peptide-Modified Polymeric Nanoparticles. Sahoo K; Karumuri S; Hikkaduwa Koralege RS; Flynn NH; Hartson S; Liu J; Ramsey JD; Kalkan AK; Pope C; Ranjan A Mol Pharm; 2017 Jul; 14(7):2224-2235. PubMed ID: 28505457 [TBL] [Abstract][Full Text] [Related]
32. Pharmaceutical applications of non-linear imaging. Strachan CJ; Windbergs M; Offerhaus HL Int J Pharm; 2011 Sep; 417(1-2):163-72. PubMed ID: 21182913 [TBL] [Abstract][Full Text] [Related]
33. Surface-enhanced Raman scattering detection and tracking of nanoprobes: enhanced uptake and nuclear targeting in single cells. Gregas MK; Scaffidi JP; Lauly B; Vo-Dinh T Appl Spectrosc; 2010 Aug; 64(8):858-66. PubMed ID: 20719048 [TBL] [Abstract][Full Text] [Related]
34. Combination of Live Cell Surface-Enhanced Raman Scattering Imaging with Chemometrics to Study Intracellular Nanoparticle Dynamics. Lenzi E; Henriksen-Lacey M; Molina B; Langer J; de Albuquerque CDL; Jimenez de Aberasturi D; Liz-Marzán LM ACS Sens; 2022 Jun; 7(6):1747-1756. PubMed ID: 35671439 [TBL] [Abstract][Full Text] [Related]
36. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. Li YS; Church JS J Food Drug Anal; 2014 Mar; 22(1):29-48. PubMed ID: 24673902 [TBL] [Abstract][Full Text] [Related]
37. Facile synthesis of Raman active phospholipid gold nanoparticles. Tam NC; Scott BM; Voicu D; Wilson BC; Zheng G Bioconjug Chem; 2010 Dec; 21(12):2178-82. PubMed ID: 21090645 [TBL] [Abstract][Full Text] [Related]
38. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy. Zhang D; Wang P; Slipchenko MN; Cheng JX Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269 [TBL] [Abstract][Full Text] [Related]
39. Raman imaging of drug delivery systems. Smith GP; McGoverin CM; Fraser SJ; Gordon KC Adv Drug Deliv Rev; 2015 Jul; 89():21-41. PubMed ID: 25632843 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies. Belsey NA; Garrett NL; Contreras-Rojas LR; Pickup-Gerlaugh AJ; Price GJ; Moger J; Guy RH J Control Release; 2014 Jan; 174():37-42. PubMed ID: 24231405 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]