These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 38026607)
1. Refractive Predictability of a Swept Source Optical Coherence Tomography Biometer in Long and Short Eyes Implanted with Extended Depth of Focus Intraocular Lenses. Blehm C; Hall B Clin Ophthalmol; 2023; 17():3525-3530. PubMed ID: 38026607 [TBL] [Abstract][Full Text] [Related]
2. Refractive Predictability of Two Intraocular Lens Power Formulas in Long, Medium, and Short Eyes Using a Swept Source Optical Coherence Tomography Biometer. Blehm C; Balest Z; Blehm AC; Hall B Clin Ophthalmol; 2024; 18():2531-2537. PubMed ID: 39253093 [TBL] [Abstract][Full Text] [Related]
3. Refractive Predictability and Biometry Agreement of a Combined Swept Source Optical Coherence and Reflectometry Biometer Compared to an Optical Low Coherence Reflectometry Biometer and an SS-OCT Biometer. Gjerdrum B; Gundersen KG; Nilsen C; Gundersen M; Jensen P Clin Ophthalmol; 2023; 17():1439-1452. PubMed ID: 37251985 [TBL] [Abstract][Full Text] [Related]
4. Comparing Predictive Accuracy of a Swept Source Optical Coherence Tomography Biometer and an Optical Low Coherence Reflectometry Biometer. Blehm C; Hall B Clin Ophthalmol; 2023; 17():2125-2131. PubMed ID: 37521148 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Astigmatism Prediction Accuracy for Toric Lens Implantation from Two Swept-Source Optical Coherence Tomography Devices. Melendez RF; Smits G; Nguyen T; Ruffaner-Hanson CD; Ortiz D; Hall B Clin Ophthalmol; 2022; 16():3795-3802. PubMed ID: 36419565 [TBL] [Abstract][Full Text] [Related]
6. Lower refractive prediction accuracy of total keratometry using intraocular lens formulas loaded onto a swept-source optical biometer. Danjo Y; Ohji R; Maeno S Graefes Arch Clin Exp Ophthalmol; 2023 Jan; 261(1):137-146. PubMed ID: 35881200 [TBL] [Abstract][Full Text] [Related]
7. Comparison of various intraocular lens formulas using a new high-resolution swept-source optical coherence tomographer. Szalai E; Toth N; Kolkedi Z; Varga C; Csutak A J Cataract Refract Surg; 2020 Aug; 46(8):1138-1141. PubMed ID: 32818329 [TBL] [Abstract][Full Text] [Related]
8. Comparison of formula accuracy for intraocular lens power calculation based on measurements by a swept-source optical coherence tomography optical biometer. Savini G; Hoffer KJ; Balducci N; Barboni P; Schiano-Lomoriello D J Cataract Refract Surg; 2020 Jan; 46(1):27-33. PubMed ID: 32050229 [TBL] [Abstract][Full Text] [Related]
9. Randomized Trial Comparing Prediction Accuracy of Two Swept Source Optical Coherence Tomography Biometers. Multack S; Plummer N; Smits G; Hall B Clin Ophthalmol; 2023; 17():2423-2428. PubMed ID: 37609646 [TBL] [Abstract][Full Text] [Related]
10. Accuracy of intraocular lens power calculation formulas using a swept-source optical biometer. Kim SY; Lee SH; Kim NR; Chin HS; Jung JW PLoS One; 2020; 15(1):e0227638. PubMed ID: 31935241 [TBL] [Abstract][Full Text] [Related]
11. Modification of the Barrett Universal II formula by the combination of the actual total corneal power and virtual axial length. Danjo Y Graefes Arch Clin Exp Ophthalmol; 2023 Jul; 261(7):1913-1921. PubMed ID: 36763168 [TBL] [Abstract][Full Text] [Related]
12. Accuracy of a New Swept-Source Optical Coherence Tomography Biometer for IOL Power Calculation and Comparison to IOLMaster. Savini G; Hoffer KJ; Shammas HJ; Aramberri J; Huang J; Barboni P J Refract Surg; 2017 Oct; 33(10):690-695. PubMed ID: 28991337 [TBL] [Abstract][Full Text] [Related]
13. Accuracy of IOL Power Calculation Formulas for Quadrifocal Acrysof IQ PanOptix TFNT Implantation in Patients With Previous Corneal Refractive Surgery: Comparison of SS-OCT-Based Biometers. Choi JY; Choi A; Kwon H; Jeon S J Refract Surg; 2021 Dec; 37(12):836-841. PubMed ID: 34914552 [TBL] [Abstract][Full Text] [Related]
14. Prediction accuracy of no-history intraocular lens formulas for a diffractive extended depth-of-focus intraocular lens after myopic corneal refractive surgery. Tan Q; Wang Y; Zhao L; Peng M; Zheng H; Lin D J Cataract Refract Surg; 2022 Apr; 48(4):462-468. PubMed ID: 34978784 [TBL] [Abstract][Full Text] [Related]
15. Intraocular lens power calculation formula accuracy: Comparison of 12 formulas for a trifocal hydrophilic intraocular lens. Rocha-de-Lossada C; Colmenero-Reina E; Flikier D; Castro-Alonso FJ; Rodriguez-Raton A; García-Madrona JL; Peraza-Nieves J; Sánchez-González JM Eur J Ophthalmol; 2021 Nov; 31(6):2981-2988. PubMed ID: 33339479 [TBL] [Abstract][Full Text] [Related]
16. Phakic intraocular lenses for the treatment of refractive errors: an evidence-based analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2009; 9(14):1-120. PubMed ID: 23074518 [TBL] [Abstract][Full Text] [Related]
17. Accuracy of swept-source optical coherence tomography based biometry for intraocular lens power calculation: a retrospective cross-sectional study. An Y; Kang EK; Kim H; Kang MJ; Byun YS; Joo CK BMC Ophthalmol; 2019 Jan; 19(1):30. PubMed ID: 30678658 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the Barrett Universal II formula to previous generation formulae for paediatric cataract surgery. Elbaz U; Khalili S; Sella R; Reitblat O; Vega Y; Achiron A; Tuuminen R; Ali A; Mireskandari K Acta Ophthalmol; 2022 Sep; 100(6):682-689. PubMed ID: 34766439 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Newer Intraocular Lens Power Calculation Methods for Eyes after Corneal Refractive Surgery. Wang L; Tang M; Huang D; Weikert MP; Koch DD Ophthalmology; 2015 Dec; 122(12):2443-9. PubMed ID: 26459996 [TBL] [Abstract][Full Text] [Related]
20. [Comparison of the accuracy of intraocular lens power calculation formulas based on the new swept-source optical coherence tomography biometry]. Deng XH; Chang PJ; Huang JH; Wang DD; Zhao YY; Ding XX; Zhao YE Zhonghua Yan Ke Za Zhi; 2021 Jul; 57(7):502-511. PubMed ID: 34256470 [No Abstract] [Full Text] [Related] [Next] [New Search]