BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38026852)

  • 1. Enhancing isoprenol production by systematically tuning metabolic pathways using CRISPR interference in
    Kim J; Lee TS
    Front Bioeng Biotechnol; 2023; 11():1296132. PubMed ID: 38026852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the IPP-bypass mevalonate pathway and fed-batch fermentation for the production of isoprenol in Escherichia coli.
    Kang A; Mendez-Perez D; Goh EB; Baidoo EEK; Benites VT; Beller HR; Keasling JD; Adams PD; Mukhopadhyay A; Lee TS
    Metab Eng; 2019 Dec; 56():85-96. PubMed ID: 31499175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale and pathway engineering for the sustainable aviation fuel precursor isoprenol production in Pseudomonas putida.
    Banerjee D; Yunus IS; Wang X; Kim J; Srinivasan A; Menchavez R; Chen Y; Gin JW; Petzold CJ; Martin HG; Magnuson JK; Adams PD; Simmons BA; Mukhopadhyay A; Kim J; Lee TS
    Metab Eng; 2024 Mar; 82():157-170. PubMed ID: 38369052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Saccharomyces cerevisiae for isoprenol production.
    Kim J; Baidoo EEK; Amer B; Mukhopadhyay A; Adams PD; Simmons BA; Lee TS
    Metab Eng; 2021 Mar; 64():154-166. PubMed ID: 33581331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
    Chapman B; Han JH; Lee HJ; Ruud I; Kim TH
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
    Zhang YM; Zheng L; Xie K
    mSphere; 2023 Feb; 8(1):e0059422. PubMed ID: 36655998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli.
    Kim SK; Seong W; Han GH; Lee DH; Lee SG
    Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels.
    Zheng Y; Liu Q; Li L; Qin W; Yang J; Zhang H; Jiang X; Cheng T; Liu W; Xu X; Xian M
    Biotechnol Biofuels; 2013; 6():57. PubMed ID: 23618128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CRISPRi-dCas9 System for Archaea and Its Use To Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans.
    Dhamad AE; Lessner DJ
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32826220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene repression via multiplex gRNA strategy in Y. lipolytica.
    Zhang JL; Peng YZ; Liu D; Liu H; Cao YX; Li BZ; Li C; Yuan YJ
    Microb Cell Fact; 2018 Apr; 17(1):62. PubMed ID: 29678175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lepidopteran mevalonate pathway optimization in Escherichia coli efficiently produces isoprenol analogs for next-generation biofuels.
    Pang B; Li J; Eiben CB; Oksen E; Barcelos C; Chen R; Englund E; Sundstrom E; Keasling JD
    Metab Eng; 2021 Nov; 68():210-219. PubMed ID: 34673235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.
    Wu MY; Sung LY; Li H; Huang CH; Hu YC
    ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial production of high octane and high sensitivity olefinic ester biofuels.
    Carruthers DN; Kim J; Mendez-Perez D; Monroe E; Myllenbeck N; Liu Y; Davis RW; Sundstrom E; Lee TS
    Biotechnol Biofuels Bioprod; 2023 Apr; 16(1):60. PubMed ID: 37016410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production.
    Kim SK; Han GH; Seong W; Kim H; Kim SW; Lee DH; Lee SG
    Metab Eng; 2016 Nov; 38():228-240. PubMed ID: 27569599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in Escherichia coli.
    Sung LY; Wu MY; Lin MW; Hsu MN; Truong VA; Shen CC; Tu Y; Hwang KY; Tu AP; Chang YH; Hu YC
    Biotechnol Bioeng; 2019 May; 116(5):1066-1079. PubMed ID: 30636321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi).
    Cleto S; Jensen JV; Wendisch VF; Lu TK
    ACS Synth Biol; 2016 May; 5(5):375-85. PubMed ID: 26829286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning.
    Gao C; Wang S; Hu G; Guo L; Chen X; Xu P; Liu L
    Biotechnol Bioeng; 2018 Mar; 115(3):661-672. PubMed ID: 29105733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production.
    Kang A; Meadows CW; Canu N; Keasling JD; Lee TS
    Metab Eng; 2017 May; 41():125-134. PubMed ID: 28389395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942.
    Huang CH; Shen CR; Li H; Sung LY; Wu MY; Hu YC
    Microb Cell Fact; 2016 Nov; 15(1):196. PubMed ID: 27846887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.