These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38026883)
1. Patient-specific air puff-induced loading using machine learning. Desouky NA; Saafan MM; Mansour MH; Maklad OM Front Bioeng Biotechnol; 2023; 11():1277970. PubMed ID: 38026883 [No Abstract] [Full Text] [Related]
2. Simulation of Air Puff Tonometry Test Using Arbitrary Lagrangian-Eulerian (ALE) Deforming Mesh for Corneal Material Characterisation. Maklad O; Eliasy A; Chen KJ; Theofilis V; Elsheikh A Int J Environ Res Public Health; 2019 Dec; 17(1):. PubMed ID: 31861736 [TBL] [Abstract][Full Text] [Related]
3. Fluid-Structure Interaction Based Algorithms for IOP and Corneal Material Behavior. Maklad O; Eliasy A; Chen KJ; Wang J; Abass A; Lopes BT; Theofilis V; Elsheikh A Front Bioeng Biotechnol; 2020; 8():970. PubMed ID: 32984273 [No Abstract] [Full Text] [Related]
4. Biomechanics of the keratoconic cornea: Theory, segmentation, pressure distribution, and coupled FE-optimization algorithm. Rahmati SM; Razaghi R; Karimi A J Mech Behav Biomed Mater; 2021 Jan; 113():104155. PubMed ID: 33125958 [TBL] [Abstract][Full Text] [Related]
5. A detailed methodology to model the Non Contact Tonometry: a Fluid Structure Interaction study. Redaelli E; Grasa J; Calvo B; Rodriguez Matas JF; Luraghi G Front Bioeng Biotechnol; 2022; 10():981665. PubMed ID: 36267451 [TBL] [Abstract][Full Text] [Related]
6. A simple computational model for scleral stiffness assessments via air-puff deformation OCT. De La Hoz A; Villegas L; Marcos S; Birkenfeld JS Front Bioeng Biotechnol; 2024; 12():1426060. PubMed ID: 39144479 [No Abstract] [Full Text] [Related]
7. Biomechanical Impact of the Sclera on Corneal Deformation Response to an Air-Puff: A Finite-Element Study. Nguyen BA; Roberts CJ; Reilly MA Front Bioeng Biotechnol; 2018; 6():210. PubMed ID: 30687701 [No Abstract] [Full Text] [Related]
8. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas. Bekesi N; Dorronsoro C; de la Hoz A; Marcos S PLoS One; 2016; 11(10):e0165669. PubMed ID: 27792759 [TBL] [Abstract][Full Text] [Related]
9. The influence of intraocular pressure and air jet pressure on corneal contactless tonometry tests. Simonini I; Pandolfi A J Mech Behav Biomed Mater; 2016 May; 58():75-89. PubMed ID: 26282384 [TBL] [Abstract][Full Text] [Related]
10. Determination of Corneal Biomechanical Behavior Eliasy A; Chen KJ; Vinciguerra R; Lopes BT; Abass A; Vinciguerra P; Ambrósio R; Roberts CJ; Elsheikh A Front Bioeng Biotechnol; 2019; 7():105. PubMed ID: 31157217 [No Abstract] [Full Text] [Related]
11. Biomechanical contribution of the sclera to dynamic corneal response in air-puff induced deformation in human donor eyes. Nguyen BA; Reilly MA; Roberts CJ Exp Eye Res; 2020 Feb; 191():107904. PubMed ID: 31883460 [TBL] [Abstract][Full Text] [Related]
12. Intraocular Pressure Based on Dynamic Bidirectional Applanation and Air-puff Tonometry: A Comparative Study. Kilavuzoglu AEB; Cosar CB; Celebi AR; Al Parmak UE J Curr Glaucoma Pract; 2019; 13(2):68-73. PubMed ID: 31564796 [TBL] [Abstract][Full Text] [Related]
13. Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus. Koprowski R; Ambrósio R Comput Biol Med; 2015 Nov; 66():170-8. PubMed ID: 26410602 [TBL] [Abstract][Full Text] [Related]
14. Coupled biomechanical response of the cornea assessed by non-contact tonometry. A simulation study. Ariza-Gracia MÁ; Zurita JF; Piñero DP; Rodriguez-Matas JF; Calvo B PLoS One; 2015; 10(3):e0121486. PubMed ID: 25780915 [TBL] [Abstract][Full Text] [Related]
15. Air-Puff-Induced Dynamics of Ocular Components Measured with Optical Biometry. Maczynska E; Rzeszewska-Zamiara J; Jimenez Villar A; Wojtkowski M; Kaluzny BJ; Grulkowski I Invest Ophthalmol Vis Sci; 2019 May; 60(6):1979-1986. PubMed ID: 31050724 [TBL] [Abstract][Full Text] [Related]
17. [Comparison of Goldmann tonometry with air-puff tonometry. A study of 159 patients in Abidjan]. Kouassi Rebours AC; Kouassi FX; Soumahoro M; Koman Chiatse Ellalie CE; Alla Ngoran Siméon KRA; Agbohoun RP J Fr Ophtalmol; 2021 Jan; 44(1):41-47. PubMed ID: 33158610 [TBL] [Abstract][Full Text] [Related]
18. Comparison between different tonometers following intrastromal corneal ring segments implantation. Elfwwal MM; Elbasty MK; Khattab MF; ElShazly MI Eur J Ophthalmol; 2022 Jan; 32(1):43-49. PubMed ID: 34472983 [TBL] [Abstract][Full Text] [Related]
19. Air puff induced corneal vibrations: theoretical simulations and clinical observations. Han Z; Tao C; Zhou D; Sun Y; Zhou C; Ren Q; Roberts CJ J Refract Surg; 2014 Mar; 30(3):208-13. PubMed ID: 24763727 [TBL] [Abstract][Full Text] [Related]
20. Eye retraction and rotation during Corvis ST 'air puff' intraocular pressure measurement and its quantitative analysis. Boszczyk A; Kasprzak H; Jóźwik A Ophthalmic Physiol Opt; 2017 May; 37(3):253-262. PubMed ID: 28439976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]