These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38026894)

  • 1. Dynamic assessment for low back-support exoskeletons during manual handling tasks.
    Xiang X; Tanaka M; Umeno S; Kikuchi Y; Kobayashi Y
    Front Bioeng Biotechnol; 2023; 11():1289686. PubMed ID: 38026894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Passive Back-Support Exoskeleton for Manual Materials Handling: Reduction of Low Back Loading and Metabolic Effort during Repetitive Lifting.
    Schmalz T; Colienne A; Bywater E; Fritzsche L; Gärtner C; Bellmann M; Reimer S; Ernst M
    IISE Trans Occup Ergon Hum Factors; 2022; 10(1):7-20. PubMed ID: 34763618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-Field Training of a Passive Back Exoskeleton Changes the Biomechanics of Logistic Workers.
    Schrøder Jakobsen L; Samani A; Desbrosses K; de Zee M; Madeleine P
    IISE Trans Occup Ergon Hum Factors; 2024 Jun; ():1-13. PubMed ID: 38869954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical Consequences of Using Passive and Active Back-Support Exoskeletons during Different Manual Handling Tasks.
    Schwartz M; Desbrosses K; Theurel J; Mornieux G
    Int J Environ Res Public Health; 2023 Jul; 20(15):. PubMed ID: 37569010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of two postural assist exoskeletons on biomechanical loading of the lumbar spine.
    Picchiotti MT; Weston EB; Knapik GG; Dufour JS; Marras WS
    Appl Ergon; 2019 Feb; 75():1-7. PubMed ID: 30509514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equivalent weight: Application of the assessment method on real task conducted by railway workers wearing a back support exoskeleton.
    Di Natali C; Buratti G; Dellera L; Caldwell D
    Appl Ergon; 2024 Jul; 118():104278. PubMed ID: 38626669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting.
    Koopman AS; Kingma I; de Looze MP; van Dieën JH
    J Biomech; 2020 Mar; 102():109486. PubMed ID: 31718821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the metabolic reductions of a passive back-support exoskeleton.
    Alemi MM; Simon AA; Geissinger J; Asbeck AT
    J Appl Physiol (1985); 2022 Mar; 132(3):737-760. PubMed ID: 35023764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic and kinetic functional requirements for industrial exoskeletons for lifting tasks and overhead lifting.
    Huysamen K; Power V; O'Sullivan L
    Ergonomics; 2020 Jul; 63(7):818-830. PubMed ID: 32320343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential exoskeleton uses for reducing low back muscular activity during farm tasks.
    Thamsuwan O; Milosavljevic S; Srinivasan D; Trask C
    Am J Ind Med; 2020 Nov; 63(11):1017-1028. PubMed ID: 32926450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical evaluation of a new passive back support exoskeleton.
    Koopman AS; Näf M; Baltrusch SJ; Kingma I; Rodriguez-Guerrero C; Babič J; de Looze MP; van Dieën JH
    J Biomech; 2020 May; 105():109795. PubMed ID: 32423541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating lumbar spine loading when using back-support exoskeletons in lifting tasks.
    Madinei S; Nussbaum MA
    J Biomech; 2023 Jan; 147():111439. PubMed ID: 36638578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical Analysis of Stoop and Free-Style Squat Lifting and Lowering with a Generic Back-Support Exoskeleton Model.
    Tröster M; Budde S; Maufroy C; Andersen MS; Rasmussen J; Schneider U; Bauernhansl T
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Lower-Back Exoskeleton With a Four-Bar Linkage Structure for Providing Extensor Moment and Lumbar Traction Force.
    Moon C; Bae J; Kwak J; Hong D
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():729-737. PubMed ID: 35286262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active exoskeleton reduces erector spinae muscle activity during lifting.
    Walter T; Stutzig N; Siebert T
    Front Bioeng Biotechnol; 2023; 11():1143926. PubMed ID: 37180043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of Soft versus Rigid Back-Support Exoskeletons during a Lifting Task.
    Schwartz M; Theurel J; Desbrosses K
    Int J Environ Res Public Health; 2021 Jul; 18(15):. PubMed ID: 34360352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using passive or active back-support exoskeletons during a repetitive lifting task: influence on cardiorespiratory parameters.
    Schwartz M; Desbrosses K; Theurel J; Mornieux G
    Eur J Appl Physiol; 2022 Dec; 122(12):2575-2583. PubMed ID: 36074202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equivalent Weight: Connecting Exoskeleton Effectiveness with Ergonomic Risk during Manual Material Handling.
    Di Natali C; Chini G; Toxiri S; Monica L; Anastasi S; Draicchio F; Caldwell DG; Ortiz J
    Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33799947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing Calibration Procedure to Train a Regression-Based Prediction Model of Actively Generated Lumbar Muscle Moments for Exoskeleton Control.
    Tabasi A; Lazzaroni M; Brouwer NP; Kingma I; van Dijk W; de Looze MP; Toxiri S; Ortiz J; van Dieën JH
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exoskeleton Application to Military Manual Handling Tasks.
    Proud JK; Lai DTH; Mudie KL; Carstairs GL; Billing DC; Garofolini A; Begg RK
    Hum Factors; 2022 May; 64(3):527-554. PubMed ID: 33203237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.