These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38027333)

  • 1. Low-Temperature-Solid Combustion Technology of Biomass for Pollution Reduction: Potentials and Necessary Fundamentals.
    Li X; Wang X; Wang H; He F
    ACS Omega; 2023 Nov; 8(46):43433-43441. PubMed ID: 38027333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prospects and issues of integration of co-combustion of solid fuels (coal and biomass) in chemical looping technology.
    Bhui B; Vairakannu P
    J Environ Manage; 2019 Feb; 231():1241-1256. PubMed ID: 30602249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release and transformation mechanisms of trace elements during biomass combustion.
    Chen C; Luo Z; Yu C
    J Hazard Mater; 2019 Dec; 380():120857. PubMed ID: 31352205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics and synergistic effects of co-combustion of carbonaceous wastes with coal.
    Onenc S; Retschitzegger S; Evic N; Kienzl N; Yanik J
    Waste Manag; 2018 Jan; 71():192-199. PubMed ID: 29097128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emission Characteristics of NO
    Ge Y; Zhang G; Zhang J; Zhang W; Cui L
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of volatile-char interaction on the NO emission from coal combustion.
    Yao M; Che D; Liu Y; Liut Y
    Environ Sci Technol; 2008 Jul; 42(13):4771-6. PubMed ID: 18678004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide reduction in coal combustion: role of char surface complexes in heterogeneous reactions.
    Arenillas A; Rubiera F; Pis JJ
    Environ Sci Technol; 2002 Dec; 36(24):5498-503. PubMed ID: 12521181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process simulation of the fusion decoupling combustion for biomass.
    Xu Y; Zhai M; Yang D; Ma Z; Kumar G; Dong P; Zhu J
    Environ Technol; 2023 Jan; 44(4):480-491. PubMed ID: 34469271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of biomass-coal blending combustion on Pb transformation.
    Yang XY; Song GC; Li ZW; Song Q
    J Hazard Mater; 2024 Jan; 461():132697. PubMed ID: 37801975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.
    Waldner MH; Halter R; Sigg A; Brosch B; Gehrmann HJ; Keunecke M
    Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas composition during thermochemical conversion of dry solid fuels and waste-derived slurries.
    Nyashina G; Dorokhov V; Romanov D; Strizhak P
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):24192-24211. PubMed ID: 36333632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acid gas emission and ash fusion characteristics of multi-component leather solid waste incineration in bubbling fluidized bed.
    Dong Y; Wang F; Ye Z; He F; Qin L; Lv G
    Environ Pollut; 2023 Oct; 335():122249. PubMed ID: 37487872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ash content on the combustion process of simulated MSW in the fixed bed.
    Sun R; Ismail TM; Ren X; Abd El-Salam M
    Waste Manag; 2016 Feb; 48():236-249. PubMed ID: 26476592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence on gaseous pollutants emissions and fly ash characteristics from co-combustion of municipal solid waste and coal by a drop tube furnace.
    Zhang S; Lin X; Chen Z; Li X; Jiang X; Yan J
    Waste Manag; 2018 Nov; 81():33-40. PubMed ID: 30527041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A detailed one-dimensional model of combustion of a woody biomass particle.
    Haseli Y; van Oijen JA; de Goey LP
    Bioresour Technol; 2011 Oct; 102(20):9772-82. PubMed ID: 21855327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Optimization on Char Conversion and NOx Emission under Various Operating Conditions in a Retrofit Biomass Boiler.
    Trinh VT; Lee BH; Kim SM; Jeon CH
    ACS Omega; 2023 May; 8(21):18530-18542. PubMed ID: 37273608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and Evaluation of Ash-Forming Element Fate and Occurrence in Woody Biomass Combustion in an Entrained-Flow Burner.
    Meka W; Szuhanszki J; Finney K; Gudka B; Jones J; Pourkashanian M; Fennell PS
    ACS Omega; 2022 May; 7(19):16306-16322. PubMed ID: 35601308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations.
    Fu Z; Zhang S; Li X; Shao J; Wang K; Chen H
    Waste Manag; 2015 Apr; 38():149-56. PubMed ID: 25680237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental evaluation of main emissions during coal processing waste combustion.
    Dmitrienko MA; Legros JC; Strizhak PA
    Environ Pollut; 2018 Feb; 233():299-305. PubMed ID: 29096302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of the physicochemical characteristics of ultrafine particle emissions from domestic solid fuel combustion during cooking and heating.
    Kuye A; Kumar P
    Sci Total Environ; 2023 Aug; 886():163747. PubMed ID: 37146811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.