These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38027349)
61. SERS, XPS and DFT Study of Xanthine Adsorbed on Citrate-Stabilized Gold Nanoparticles. Caporali S; Muniz-Miranda F; Pedone A; Muniz-Miranda M Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31208081 [TBL] [Abstract][Full Text] [Related]
62. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution. Sivashanmugan K; Liao JD; Liu BH; Yao CK Anal Chim Acta; 2013 Oct; 800():56-64. PubMed ID: 24120168 [TBL] [Abstract][Full Text] [Related]
63. Adsorption of benzoic acid, phthalic acid on gold substrates studied by surface-enhanced Raman scattering spectroscopy and density functional theory calculations. Gao J; Hu Y; Li S; Zhang Y; Chen X Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 104():41-7. PubMed ID: 23261703 [TBL] [Abstract][Full Text] [Related]
64. Rapid simultaneous adsorption and SERS detection of acid orange II using versatile gold nanoparticles decorated NH Wang Q; Shi Z; Wang Z; Zhao Y; Li J; Hu H; Bai Y; Xu Z; Zhangsun H; Wang L Anal Chim Acta; 2020 Sep; 1129():126-135. PubMed ID: 32891382 [TBL] [Abstract][Full Text] [Related]
65. Sensitive and uniform detection using Surface-Enhanced Raman Scattering: Influence of colloidal-droplets evaporation based on Au-Ag alloy nanourchins. Zhang D; Fang J; Li T J Colloid Interface Sci; 2018 Mar; 514():217-226. PubMed ID: 29268212 [TBL] [Abstract][Full Text] [Related]
66. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates. Choi S; Ahn M; Kim J Anal Chim Acta; 2013 May; 779():1-7. PubMed ID: 23663665 [TBL] [Abstract][Full Text] [Related]
67. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues. Ji W; Yao W Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():125-30. PubMed ID: 25754387 [TBL] [Abstract][Full Text] [Related]
68. Gap-Tethered Au@AgAu Raman Tags for the Ratiometric Detection of MC-LR. Zhao Y; Zheng F; Ke W; Zhang W; Shi L; Liu H Anal Chem; 2019 Jun; 91(11):7162-7172. PubMed ID: 31066265 [TBL] [Abstract][Full Text] [Related]
69. Chemical analysis of polycyclic aromatic hydrocarbons by surface-enhanced Raman spectroscopy. Costa JC; Sant'ana AC; Corio P; Temperini ML Talanta; 2006 Dec; 70(5):1011-6. PubMed ID: 18970875 [TBL] [Abstract][Full Text] [Related]
70. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates. Roca M; Haes AJ J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552 [TBL] [Abstract][Full Text] [Related]
71. Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer. Zhao L; Kim TH; Kim HW; Ahn JC; Kim SY Acta Biomater; 2015 Jul; 20():155-164. PubMed ID: 25848726 [TBL] [Abstract][Full Text] [Related]
72. Understanding Time-Dependent Surface-Enhanced Raman Scattering from Gold Nanosphere Aggregates Using Collision Theory. Phan HT; Heiderscheit TS; Haes AJ J Phys Chem C Nanomater Interfaces; 2020 Jul; 124(26):14287-14296. PubMed ID: 32944118 [TBL] [Abstract][Full Text] [Related]
73. pH effect on surface potential of polyelectrolytes-capped gold nanoparticles probed by surface-enhanced Raman scattering. Kim K; Lee JW; Choi JY; Shin KS Langmuir; 2010 Dec; 26(24):19163-9. PubMed ID: 21114273 [TBL] [Abstract][Full Text] [Related]
74. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole. Liao X; Chen Y; Qin M; Chen Y; Yang L; Zhang H; Tian Y Talanta; 2013 Dec; 117():203-8. PubMed ID: 24209331 [TBL] [Abstract][Full Text] [Related]
76. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering. Payton JL; Morton SM; Moore JE; Jensen L Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411 [TBL] [Abstract][Full Text] [Related]
77. Large-Scale Flexible Surface-Enhanced Raman Scattering (SERS) Sensors with High Stability and Signal Homogeneity. Liu X; Ma J; Jiang P; Shen J; Wang R; Wang Y; Tu G ACS Appl Mater Interfaces; 2020 Oct; 12(40):45332-45341. PubMed ID: 32914628 [TBL] [Abstract][Full Text] [Related]
78. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags. Chen M; Zhang L; Yang B; Gao M; Zhang X Anal Bioanal Chem; 2018 Mar; 410(8):2203-2210. PubMed ID: 29396584 [TBL] [Abstract][Full Text] [Related]
79. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Lim DK; Jeon KS; Hwang JH; Kim H; Kwon S; Suh YD; Nam JM Nat Nanotechnol; 2011 May; 6(7):452-60. PubMed ID: 21623360 [TBL] [Abstract][Full Text] [Related]
80. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Wang C; Wu X; Dong P; Chen J; Xiao R Biosens Bioelectron; 2016 Dec; 86():944-950. PubMed ID: 27498319 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]