These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83. A universal strategy for the incorporation of internal standards into SERS substrates to improve the reproducibility of Raman signals. Lin B; Yao Y; Wang Y; Kannan P; Chen L; Guo L Analyst; 2021 Nov; 146(23):7168-7177. PubMed ID: 34700332 [TBL] [Abstract][Full Text] [Related]
84. A systematic investigation of acetylene activation and hydracyanation of the activated acetylene on Aun (n = 3-10) clusters via density functional theory. Gautam S; Sarkar AD Phys Chem Chem Phys; 2016 May; 18(20):13830-43. PubMed ID: 27146078 [TBL] [Abstract][Full Text] [Related]
85. MOF-derived AuNS/LDH with high adsorption ability for surface enhanced Raman spectroscopy detection. Cong T; Zhang Y; Huang H; Zhao Y; Li C; Fan Z; Pan L Anal Chim Acta; 2022 Sep; 1224():340201. PubMed ID: 35998986 [TBL] [Abstract][Full Text] [Related]
86. New preparation method of gold nanoparticles on SiO2. Zanella R; Sandoval A; Santiago P; Basiuk VA; Saniger JM J Phys Chem B; 2006 May; 110(17):8559-65. PubMed ID: 16640406 [TBL] [Abstract][Full Text] [Related]
87. Raman spectroelectrochemical study of Meldola blue, adsorbed and electropolymerized at a gold electrode. Mažeikienė R; Niaura G; Eicher-Lorka O; Malinauskas A J Colloid Interface Sci; 2011 May; 357(1):189-97. PubMed ID: 21349529 [TBL] [Abstract][Full Text] [Related]
88. Adsorption and sub-nanomolar sensing of thioflavin T on colloidal gold nanoparticles, silver nanoparticles and silver-coated films studied using surface-enhanced Raman scattering. Maiti N; Chadha R; Das A; Kapoor S Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():949-56. PubMed ID: 26005992 [TBL] [Abstract][Full Text] [Related]
89. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots. Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765 [TBL] [Abstract][Full Text] [Related]
90. Chemical Mechanism-Dominated and Reporter-Tunable Surface-Enhanced Raman Scattering via Directional Supramolecular Assembly. Wang Z; Huang L; Zhang M; Li Z; Wang L; Jin H; Mu X; Dai Z J Am Chem Soc; 2022 Sep; 144(38):17330-17335. PubMed ID: 36075049 [TBL] [Abstract][Full Text] [Related]
91. Surface-Enhanced Raman Scattering (SERS) Active Gold Nanoparticles Decorated on a Porous Polymer Filter. Chen L; Yan H; Xue X; Jiang D; Cai Y; Liang D; Jung YM; Han XX; Zhao B Appl Spectrosc; 2017 Jul; 71(7):1543-1550. PubMed ID: 28441033 [TBL] [Abstract][Full Text] [Related]
92. Periodic trends in electrode-chemisorbate bonding: benzonitrile on platinum-group and other noble metals as probed by surface-enhanced Raman spectroscopy combined with density functional theory. Mrozek MF; Wasileski SA; Weaver MJ J Am Chem Soc; 2001 Dec; 123(51):12817-25. PubMed ID: 11749539 [TBL] [Abstract][Full Text] [Related]
93. Surface enhanced Raman scattering investigation of the halide anion effect on the adsorption of 1,2,3-triazole on silver and gold colloidal nanoparticles. Pergolese B; Muniz-Miranda M; Bigotto A J Phys Chem B; 2005 May; 109(19):9665-71. PubMed ID: 16852164 [TBL] [Abstract][Full Text] [Related]
94. Correlation of surface-enhanced Raman scattering (SERS) with the surface density of gold nanoparticles: evaluation of the critical number of SERS tags for a detectable signal. Amendola V Beilstein J Nanotechnol; 2019; 10():1016-1023. PubMed ID: 31165028 [TBL] [Abstract][Full Text] [Related]
95. Physicochemical Trapping of Neurotransmitters in Polymer-Mediated Gold Nanoparticle Aggregates for Surface-Enhanced Raman Spectroscopy. Vander Ende E; Bourgeois MR; Henry AI; Chávez JL; Krabacher R; Schatz GC; Van Duyne RP Anal Chem; 2019 Aug; 91(15):9554-9562. PubMed ID: 31283189 [TBL] [Abstract][Full Text] [Related]
96. Adsorption study and detection of the high performance organic pigments quinacridone and 2,9-dimethylquinacridone on Ag nanoparticles by surface-enhanced optical spectroscopy. del Puerto E; Domingo C; Garcia Ramos JV; Sanchez-Cortes S Langmuir; 2014 Jan; 30(3):753-61. PubMed ID: 24417650 [TBL] [Abstract][Full Text] [Related]
97. Facile Synthesis of Au-Coated Magnetic Nanoparticles and Their Application in Bacteria Detection via a SERS Method. Wang J; Wu X; Wang C; Rong Z; Ding H; Li H; Li S; Shao N; Dong P; Xiao R; Wang S ACS Appl Mater Interfaces; 2016 Aug; 8(31):19958-67. PubMed ID: 27420923 [TBL] [Abstract][Full Text] [Related]
98. Selecting the Mechanism of Surface-Enhanced Raman Scattering Effect using Shell Isolated Nanoparticles and an Oxo-Triruthenium Acetate Cluster Complex. Santos JJ; Toma SH; Monezi NM; Ando RA; Corio P; Araki K Inorg Chem; 2019 Aug; 58(15):10399-10407. PubMed ID: 31339710 [TBL] [Abstract][Full Text] [Related]
99. Chemical Enhancement Effect of Icotinib-Au Complex Studied by Combined Density Functional Theory and Surface-Enhanced Raman Scattering. Lian S; Gao X; Song C; Li H; Lin J Langmuir; 2021 Nov; 37(44):12907-12918. PubMed ID: 34705473 [TBL] [Abstract][Full Text] [Related]
100. Interactions between the antifungal drug myclobutanil and gold and silver nanoparticles in Penicillium digitatum investigated by surface-enhanced Raman scattering. Cho EM; Singh DK; Ganbold EO; Dembereldorj U; Jang SW; Kim D; Choo J; Kim S; Lee CM; Yang SI; Joo SW Appl Spectrosc; 2014; 68(3):307-14. PubMed ID: 24666947 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]