These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38027638)

  • 1. Effects of lipids from multiple sources on glyceride composition, concentration, and structure of infant formulas benchmarked to human milk.
    Liu Q; Qiao W; Liu Y; Liu Y; Zhao J; Fan X; Li Z; Hou J; Liu Y; Chen J; Yang K; Yu X; Lin L; Jin Y; Chen L
    Heliyon; 2023 Nov; 9(11):e21611. PubMed ID: 38027638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid Profiles of Human Milk and Infant Formulas: A Comparative Lipidomics Study.
    Wu D; Zhang L; Zhang Y; Shi J; Tan CP; Zheng Z; Liu Y
    Foods; 2023 Feb; 12(3):. PubMed ID: 36766129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Chemical Composition and Microstructure in Human Milk and Infant Formulas on Lipid Digestion.
    Yuan T; Zhu X; Mu G; Qian F; Xiong H
    J Agric Food Chem; 2020 May; 68(19):5462-5470. PubMed ID: 32307995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similarity Index for the Fat Fraction between Breast Milk and Infant Formulas.
    Hokkanen S; Frey AD; Yang B; Linderborg KM
    J Agric Food Chem; 2022 May; 70(20):6191-6201. PubMed ID: 35543583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Analysis of Nervonic and Erucic Acids in Human Milk: Comparison with Infant Formula with Different Fat Sources and Nutritional Stages.
    Duan B; Shin JA; Lee KT
    J Oleo Sci; 2024; 73(3):333-340. PubMed ID: 38432997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Quantification of Triacylglycerols Using Ultraperformance Supercritical Fluid Chromatography and Quadrupole Time-of-Flight Mass Spectrometry: Comparison of Human Milk, Infant Formula, Other Mammalian Milk, and Plant Oil.
    Zhang X; Wei W; Tao G; Jin Q; Wang X
    J Agric Food Chem; 2021 Aug; 69(32):8991-9003. PubMed ID: 33755452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of sn-2 fatty acid composition in commercial infant formulas on the Chinese market: A comparative study based on fat source and stage.
    Sun C; Wei W; Su H; Zou X; Wang X
    Food Chem; 2018 Mar; 242():29-36. PubMed ID: 29037692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ostrich oil as a fat substitute in milk-based infant formula.
    Dalvi-Isfahan M; Moammernezhad Z; Tavakoli J
    Food Sci Nutr; 2023 Apr; 11(4):1872-1881. PubMed ID: 37051360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of an Infant Formula Containing a Novel Fat Blend (Cow's Milk Fat, Fish and Vegetable Oil) and Prebiotics on Stool Fatty Acid Soaps and Erythrocyte Fatty Acid Profiles in Full-Term Healthy Newborns.
    Lambidou M; Alteheld B; Fimmers R; Jochum F; Nomayo A; Stehle P
    Ann Nutr Metab; 2021; 77(3):138-145. PubMed ID: 33934094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Precision Nutrition: Commercial Infant Formulas and Human Milk Compared for Stereospecific Distribution of Fatty Acids Using Metabolomics.
    Lopes TIB; Cañedo MC; Oliveira FMP; Alcantara GB
    OMICS; 2018 Jul; 22(7):484-492. PubMed ID: 30004842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sterols in Infant Formulas: A Bioaccessibility Study.
    Hamdan IJA; Sanchez-Siles LM; Garcia-Llatas G; Lagarda MJ
    J Agric Food Chem; 2018 Feb; 66(6):1377-1385. PubMed ID: 29369630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Lipidomics Analysis of Human Milk and Infant Formulas Using UHPLC-Q-TOF-MS.
    Zhang X; Liu L; Wang L; Pan Y; Hao X; Zhang G; Li X; Hussain M
    J Agric Food Chem; 2021 Jan; 69(3):1146-1155. PubMed ID: 33464051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Fatty Acid Distributions and Triacylglycerol Species in Sow Milk and Commercial Piglet Formulas: A Comparative Study Based on Fat Sources and Lactation Stages.
    Ren C; Jin J; Huppertz T; Zhang Y; Jin Q; Wang X
    Animals (Basel); 2022 Dec; 13(1):. PubMed ID: 36611734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fat content and fatty acid composition of infant formulas.
    Koletzko B; Bremer HJ
    Acta Paediatr Scand; 1989 Jul; 78(4):513-21. PubMed ID: 2782065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic interesterification of tripalmitin with vegetable oil blends for formulation of caprine milk infant formula analogs.
    Maduko CO; Akoh CC; Park YW
    J Dairy Sci; 2007 Feb; 90(2):594-601. PubMed ID: 17235135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Sialic Acid in Infant Feeding: Contents and Bioavailability.
    Claumarchirant L; Sanchez-Siles LM; Matencio E; Alegría A; Lagarda MJ
    J Agric Food Chem; 2016 Nov; 64(44):8333-8342. PubMed ID: 27750424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human milk fat substitutes: Past achievements and current trends.
    Wei W; Jin Q; Wang X
    Prog Lipid Res; 2019 Apr; 74():69-86. PubMed ID: 30796946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of new lipids from bovine milk fat for baby nutrition.
    Viriato RLS; Queirós MS; Macedo GA; Ribeiro APB; Gigante ML
    Crit Rev Food Sci Nutr; 2022; 62(1):145-159. PubMed ID: 32876475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Molecular Species Distribution of DHA-Containing Triacylglycerols in Milk and Different Infant Formulas by Liquid Chromatography-Mass Spectrometry.
    Liu Z; Cocks BG; Rochfort S
    J Agric Food Chem; 2016 Mar; 64(10):2134-44. PubMed ID: 26902881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell membrane fatty acid composition in infants fed formulas with different lipid profiles.
    Visentin S; Vicentin D; Magrini G; Santandreu F; Disalvo L; Sala M; Fasano V; González HF
    Early Hum Dev; 2016 Sep; 100():11-5. PubMed ID: 27391868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.