These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38028403)

  • 1. Sustainable PET Waste Recycling: Labels from PET Water Bottles Used as a Catalyst for the Chemical Recycling of the Same Bottles.
    Enayati M; Mohammadi S; Bouldo MG
    ACS Sustain Chem Eng; 2023 Nov; 11(46):16618-16626. PubMed ID: 38028403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled Glycolysis of Poly(ethylene terephthalate) to Oligomers under Microwave Irradiation Using Antimony(III) Oxide.
    Mohammadi S; Bouldo MG; Enayati M
    ACS Appl Polym Mater; 2023 Aug; 5(8):6574-6584. PubMed ID: 37588081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depolymerization of poly(ethylene terephthalate) waste with biomass-waste derived recyclable heterogeneous catalyst.
    Laldinpuii Z; Lalhmangaihzuala S; Pachuau Z; Vanlaldinpuia K
    Waste Manag; 2021 May; 126():1-10. PubMed ID: 33730654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PET Glycolysis to BHET Efficiently Catalyzed by Stable and Recyclable Pd-Cu/γ-Al
    Zhou L; Qin E; Huang H; Wang Y; Li M
    Molecules; 2024 Sep; 29(18):. PubMed ID: 39339298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured micro particles as a low-cost and sustainable catalyst in the recycling of PET fiber waste by the glycolysis method.
    Guo Z; Adolfsson E; Tam PL
    Waste Manag; 2021 May; 126():559-566. PubMed ID: 33862509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic ionic liquid catalyst functionalized with antimony (III) bromide for effective glycolysis of polyethylene terephthalate.
    Mohammadi S; Enayati M
    Waste Manag; 2023 Oct; 170():308-316. PubMed ID: 37738758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-porous ZIF-8 heterogeneous catalysts with increased reaction sites for efficient PET glycolysis.
    Han N; Lee K; Lee J; Jo JH; An EJ; Lee G; Chi WS; Lee C
    Chemosphere; 2024 Sep; 364():143187. PubMed ID: 39187024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical Recycling of PET Using Catalysts from Layered Double Hydroxides: Effect of Synthesis Method and Mg-Fe Biocompatible Metals.
    Arcanjo AP; Liborio DO; Arias S; Carvalho FR; Silva JP; Ribeiro BD; Dias ML; Castro AM; Fréty R; Barbosa CMBM; Pacheco JGA
    Polymers (Basel); 2023 Aug; 15(15):. PubMed ID: 37571167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallization of Bis(2-hydroxyethylene) Terephthalate as a Part of a Bottle-to-Bottle Recycling Concept for Poly(ethylene terephthalate).
    Grause G; Sutton J; Dove AP; Mitchell NA; Wood J
    Cryst Growth Des; 2024 Sep; 24(17):7306-7321. PubMed ID: 39247225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the Sustainability of Catalytic Glycolysis of Complex PET Waste through Bio-Solvolysis.
    Amundarain I; López-Montenegro S; Fulgencio-Medrano L; Leivar J; Iruskieta A; Asueta A; Miguel-Fernández R; Arnaiz S; Pereda-Ayo B
    Polymers (Basel); 2024 Jan; 16(1):. PubMed ID: 38201807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ti-Si composite glycol salts: depolymerization and repolymerization studies of PET.
    Yu Y; Shen G; Xu TJ; Wen R; Qiao YC; Cheng RC; Huo Y
    RSC Adv; 2023 Dec; 13(51):36337-36345. PubMed ID: 38093730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Recycling of Used PET by Glycolysis Using Niobia-Based Catalysts.
    Shirazimoghaddam S; Amin I; Faria Albanese JA; Shiju NR
    ACS Eng Au; 2023 Feb; 3(1):37-44. PubMed ID: 36820227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization and Kinetic Evaluation for Glycolytic Depolymerization of Post-Consumer PET Waste with Sodium Methoxide.
    Javed S; Fisse J; Vogt D
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Step Chemo-Microbial Degradation of Post-Consumer Polyethylene Terephthalate (PET) Plastic Enabled by a Biomass-Waste Catalyst.
    Shingwekar D; Laster H; Kemp H; Mellies JL
    Bioengineering (Basel); 2023 Oct; 10(11):. PubMed ID: 38002377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new strategy for PET depolymerization: Application of bimetallic MOF-74 as a selective catalyst.
    Baluk MA; Trzebiatowska PJ; Pieczyńska A; Makowski D; Kroczewska M; Łuczak J; Zaleska-Medynska A
    J Environ Manage; 2024 Jul; 363():121360. PubMed ID: 38850902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing PET Glycolysis with an Oyster Shell-Derived Catalyst Using Response Surface Methodology.
    Kim Y; Kim M; Hwang J; Im E; Moon GD
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of Poly(Ethylene Terephthalate) Homogeneous Glycolysis Kinetics.
    Kirshanov KA; Toms RV; Balashov MS; Golubkov SS; Melnikov PV; Gervald AY
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling of Waste Poly(ethylene terephthalate) Bottles by Alkaline Hydrolysis and Recovery of Pure Nanospindle-Shaped Terephthalic Acid.
    Singh S; Sharma S; Umar A; Mehta SK; Bhatti MS; Kansal SK
    J Nanosci Nanotechnol; 2018 Aug; 18(8):5804-5809. PubMed ID: 29458644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DFT study on the depolymerization of PET by Ca-catalyzed glycolysis reaction model.
    Arunphacharawit A; Poonsawat T; Meechai T; Chaicharoenwimolkul Chuaitammakit L; Somsook E
    Heliyon; 2024 Aug; 10(15):e34666. PubMed ID: 39145025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungal and enzymatic bio-depolymerization of waste post-consumer poly(ethylene terephthalate) (PET) bottles using
    Moyses DN; Teixeira DA; Waldow VA; Freire DMG; Castro AM
    3 Biotech; 2021 Oct; 11(10):435. PubMed ID: 34603913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.