These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 38028749)
1. Genetics of chilling response at early growth stage in rice: a recessive gene for tolerance and importance of acclimation. Baruah AR; Bannai H; Meija Y; Kimura A; Ueno H; Koide Y; Kishima Y; Palta J; Kasuga J; Yamamoto MP; Onishi K AoB Plants; 2023 Dec; 15(6):plad075. PubMed ID: 38028749 [TBL] [Abstract][Full Text] [Related]
2. Assessment of Five Chilling Tolerance Traits and GWAS Mapping in Rice Using the USDA Mini-Core Collection. Schläppi MR; Jackson AK; Eizenga GC; Wang A; Chu C; Shi Y; Shimoyama N; Boykin DL Front Plant Sci; 2017; 8():957. PubMed ID: 28642772 [TBL] [Abstract][Full Text] [Related]
3. Genome-Wide Association Mapping Identifies New Candidate Genes for Cold Stress and Chilling Acclimation at Seedling Stage in Rice ( Li J; Khatab AA; Hu L; Zhao L; Yang J; Wang L; Xie G Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361995 [TBL] [Abstract][Full Text] [Related]
4. Comparative proteomic analysis of QTL CTS-12 derived from wild rice (Oryza rufipogon Griff.), in the regulation of cold acclimation and de-acclimation of rice (Oryza sativa L.) in response to severe chilling stress. Cen W; Liu J; Lu S; Jia P; Yu K; Han Y; Li R; Luo J BMC Plant Biol; 2018 Aug; 18(1):163. PubMed ID: 30097068 [TBL] [Abstract][Full Text] [Related]
5. Global identification of quantitative trait loci and candidate genes for cold stress and chilling acclimation in rice through GWAS and RNA-seq. Khatab AA; Li J; Hu L; Yang J; Fan C; Wang L; Xie G Planta; 2022 Sep; 256(4):82. PubMed ID: 36103054 [TBL] [Abstract][Full Text] [Related]
6. COG3 confers the chilling tolerance to mediate OsFtsH2-D1 module in rice. Liu D; Luo S; Li Z; Liang G; Guo Y; Xu Y; Chong K New Phytol; 2024 Mar; 241(5):2143-2157. PubMed ID: 38173177 [TBL] [Abstract][Full Text] [Related]
7. Chilling-induced phosphorylation of IPA1 by OsSAPK6 activates chilling tolerance responses in rice. Jia M; Meng X; Song X; Zhang D; Kou L; Zhang J; Jing Y; Liu G; Liu H; Huang X; Wang Y; Yu H; Li J Cell Discov; 2022 Jul; 8(1):71. PubMed ID: 35882853 [TBL] [Abstract][Full Text] [Related]
8. COG2 negatively regulates chilling tolerance through cell wall components altered in rice. Feng J; Li Z; Luo W; Liang G; Xu Y; Chong K Theor Appl Genet; 2023 Jan; 136(1):19. PubMed ID: 36680595 [TBL] [Abstract][Full Text] [Related]
9. Wang H; Lu S; Guan X; Jiang Y; Wang B; Hua J; Zou B Front Plant Sci; 2022; 13():851731. PubMed ID: 35685002 [TBL] [Abstract][Full Text] [Related]
10. An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. Cheng C; Yun KY; Ressom HW; Mohanty B; Bajic VB; Jia Y; Yun SJ; de los Reyes BG BMC Genomics; 2007 Jun; 8():175. PubMed ID: 17577400 [TBL] [Abstract][Full Text] [Related]
11. Chilling acclimation provides immunity to stress by altering regulatory networks and inducing genes with protective functions in cassava. Zeng C; Chen Z; Xia J; Zhang K; Chen X; Zhou Y; Bo W; Song S; Deng D; Guo X; Wang B; Zhou J; Peng H; Wang W; Peng M; Zhang W BMC Plant Biol; 2014 Aug; 14():207. PubMed ID: 25090992 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome profiling of short-term response to chilling stress in tolerant and sensitive Oryza sativa ssp. Japonica seedlings. Buti M; Pasquariello M; Ronga D; Milc JA; Pecchioni N; Ho VT; Pucciariello C; Perata P; Francia E Funct Integr Genomics; 2018 Nov; 18(6):627-644. PubMed ID: 29876699 [TBL] [Abstract][Full Text] [Related]
13. New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis. Lv Y; Guo Z; Li X; Ye H; Li X; Xiong L Plant Cell Environ; 2016 Mar; 39(3):556-70. PubMed ID: 26381647 [TBL] [Abstract][Full Text] [Related]
14. Fine mapping of the qLOP2 and qPSR2-1 loci associated with chilling stress tolerance of wild rice seedlings. Xiao N; Huang WN; Li AH; Gao Y; Li YH; Pan CH; Ji H; Zhang XX; Dai Y; Dai ZY; Chen JM Theor Appl Genet; 2015 Jan; 128(1):173-85. PubMed ID: 25367381 [TBL] [Abstract][Full Text] [Related]
15. Proteome analysis reveals a systematic response of cold-acclimated seedlings of an exotic mangrove plant Sonneratia apetala to chilling stress. Shen ZJ; Qin YY; Luo MR; Li Z; Ma DN; Wang WH; Zheng HL J Proteomics; 2021 Sep; 248():104349. PubMed ID: 34411764 [TBL] [Abstract][Full Text] [Related]
16. Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes. Zhang T; Zhao X; Wang W; Pan Y; Huang L; Liu X; Zong Y; Zhu L; Yang D; Fu B PLoS One; 2012; 7(8):e43274. PubMed ID: 22912843 [TBL] [Abstract][Full Text] [Related]
17. Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice. Zhang J; Luo W; Zhao Y; Xu Y; Song S; Chong K New Phytol; 2016 Sep; 211(4):1295-310. PubMed ID: 27198693 [TBL] [Abstract][Full Text] [Related]
18. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. Pradhan SK; Pandit E; Nayak DK; Behera L; Mohapatra T BMC Plant Biol; 2019 Aug; 19(1):352. PubMed ID: 31412781 [TBL] [Abstract][Full Text] [Related]
19. Genome-Wide Association Study Reveals the Genetic Basis of Chilling Tolerance in Rice at the Reproductive Stage. Jeong BY; Lee Y; Kwon Y; Kim JH; Ham TH; Kwon SW; Lee J Plants (Basel); 2021 Aug; 10(8):. PubMed ID: 34451767 [TBL] [Abstract][Full Text] [Related]
20. Differential Gene Expression in Chilling-Acclimated Maize Seedlings and Evidence for the Involvement of Abscisic Acid in Chilling Tolerance. Anderson MD; Prasad TK; Martin BA; Stewart CR Plant Physiol; 1994 May; 105(1):331-339. PubMed ID: 12232205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]