These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38028774)

  • 41. The POOR Get POORer: A Hypothesis for the Pathogenesis of Ventilator-induced Lung Injury.
    Gaver DP; Nieman GF; Gatto LA; Cereda M; Habashi NM; Bates JHT
    Am J Respir Crit Care Med; 2020 Oct; 202(8):1081-1087. PubMed ID: 33054329
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High frequency percussive ventilation increases alveolar recruitment in early acute respiratory distress syndrome: an experimental, physiological and CT scan study.
    Godet T; Jabaudon M; Blondonnet R; Tremblay A; Audard J; Rieu B; Pereira B; Garcier JM; Futier E; Constantin JM
    Crit Care; 2018 Jan; 22(1):3. PubMed ID: 29325586
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Airway pressure release ventilation: an alternative mode of mechanical ventilation in acute respiratory distress syndrome.
    Modrykamien A; Chatburn RL; Ashton RW
    Cleve Clin J Med; 2011 Feb; 78(2):101-10. PubMed ID: 21285342
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantification of atelectatic lung volumes in two different porcine models of ARDS.
    Karmrodt J; Bletz C; Yuan S; David M; Heussel CP; Markstaller K
    Br J Anaesth; 2006 Dec; 97(6):883-95. PubMed ID: 17046849
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters cyclic alveolar collapse in oleic-acid-induced lung injury: a randomized controlled computed tomography trial.
    Wrigge H; Zinserling J; Neumann P; Muders T; Magnusson A; Putensen C; Hedenstierna G
    Crit Care; 2005; 9(6):R780-9. PubMed ID: 16356227
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Alveolar recruitment in combination with sufficient positive end-expiratory pressure increases oxygenation and lung aeration in patients with severe chest trauma.
    Schreiter D; Reske A; Stichert B; Seiwerts M; Bohm SH; Kloeppel R; Josten C
    Crit Care Med; 2004 Apr; 32(4):968-75. PubMed ID: 15071387
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An estimation of mechanical stress on alveolar walls during repetitive alveolar reopening and closure.
    Chen ZL; Song YL; Hu ZY; Zhang S; Chen YZ
    J Appl Physiol (1985); 2015 Aug; 119(3):190-201. PubMed ID: 26023222
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Management of severe acute respiratory distress syndrome: a primer.
    Grotberg JC; Reynolds D; Kraft BD
    Crit Care; 2023 Jul; 27(1):289. PubMed ID: 37464381
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unsuccessful and Successful Clinical Trials in Acute Respiratory Distress Syndrome: Addressing Physiology-Based Gaps.
    Villar J; Ferrando C; Tusman G; Berra L; Rodríguez-Suárez P; Suárez-Sipmann F
    Front Physiol; 2021; 12():774025. PubMed ID: 34916959
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Utilization of Airway Pressure Release Ventilation as a Rescue Strategy in COVID-19 Patients: A Retrospective Analysis.
    Mahmoud O; Patadia D; Salonia J
    J Intensive Care Med; 2021 Oct; 36(10):1194-1200. PubMed ID: 34231408
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recruitment maneuvers in acute respiratory distress syndrome.
    Constantin JM; Godet T; Jabaudon M; Bazin JE; Futier E
    Ann Transl Med; 2017 Jul; 5(14):290. PubMed ID: 28828365
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The impact of spontaneous ventilation on distribution of lung aeration in patients with acute respiratory distress syndrome: airway pressure release ventilation versus pressure support ventilation.
    Yoshida T; Rinka H; Kaji A; Yoshimoto A; Arimoto H; Miyaichi T; Kan M
    Anesth Analg; 2009 Dec; 109(6):1892-900. PubMed ID: 19923518
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Time controlled adaptive ventilation™ as conservative treatment of destroyed lung: an alternative to lung transplantation.
    Janssen M; Meeder JHJ; Seghers L; den Uil CA
    BMC Pulm Med; 2021 May; 21(1):176. PubMed ID: 34022829
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three Alveolar Phenotypes Govern Lung Function in Murine Ventilator-Induced Lung Injury.
    Smith BJ; Roy GS; Cleveland A; Mattson C; Okamura K; Charlebois CM; Hamlington KL; Novotny MV; Knudsen L; Ochs M; Hite RD; Bates JHT
    Front Physiol; 2020; 11():660. PubMed ID: 32695013
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The future of mechanical ventilation: lessons from the present and the past.
    Gattinoni L; Marini JJ; Collino F; Maiolo G; Rapetti F; Tonetti T; Vasques F; Quintel M
    Crit Care; 2017 Jul; 21(1):183. PubMed ID: 28701178
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Airway pressure release ventilation: what do we know?
    Daoud EG; Farag HL; Chatburn RL
    Respir Care; 2012 Feb; 57(2):282-92. PubMed ID: 21762559
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Altered alveolar mechanics in the acutely injured lung.
    Schiller HJ; McCann UG; Carney DE; Gatto LA; Steinberg JM; Nieman GF
    Crit Care Med; 2001 May; 29(5):1049-55. PubMed ID: 11383531
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Airway pressure release ventilation versus low tidal volume ventilation for patients with acute respiratory distress syndrome/acute lung injury: a meta-analysis of randomized clinical trials.
    Zhong X; Wu Q; Yang H; Dong W; Wang B; Zhang Z; Liang G
    Ann Transl Med; 2020 Dec; 8(24):1641. PubMed ID: 33490153
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Increasing the inspiratory time and I:E ratio during mechanical ventilation aggravates ventilator-induced lung injury in mice.
    Müller-Redetzky HC; Felten M; Hellwig K; Wienhold SM; Naujoks J; Opitz B; Kershaw O; Gruber AD; Suttorp N; Witzenrath M
    Crit Care; 2015 Jan; 19(1):23. PubMed ID: 25888164
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Permissive Hypercapnia, Alveolar Recruitment and Low Airway Pressure (PHARLAP): a protocol for a phase 2 trial in patients with acute respiratory distress syndrome.
    Hodgson C; Cooper DJ; Arabi Y; Bennett V; Bersten A; Brickell K; Davies A; Fahey C; Fraser J; McGuinness S; Murray L; Parke R; Tuxen D; Vallance S; Young M; Nichol AD;
    Crit Care Resusc; 2018 Jun; 20(2):139-149. PubMed ID: 29852853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.