These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38028781)

  • 1. Human behavior recognition based on sparse transformer with channel attention mechanism.
    Cao K; Wang M
    Front Physiol; 2023; 14():1239453. PubMed ID: 38028781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-Branch Interactive Networks on Multichannel Time Series for Human Activity Recognition.
    Tang Y; Zhang L; Wu H; He J; Song A
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):5223-5234. PubMed ID: 35867366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revolutionizing health monitoring: Integrating transformer models with multi-head attention for precise human activity recognition using wearable devices.
    Muniasamy A
    Technol Health Care; 2024 Aug; ():. PubMed ID: 39269866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial-Measurement-Unit-Based Novel Human Activity Recognition Algorithm Using Conformer.
    Kim YW; Cho WH; Kim KS; Lee S
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human activity recognition from sensor data using spatial attention-aided CNN with genetic algorithm.
    Sarkar A; Hossain SKS; Sarkar R
    Neural Comput Appl; 2023; 35(7):5165-5191. PubMed ID: 36311167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GLULA: Linear attention-based model for efficient human activity recognition from wearable sensors.
    Bolatov A; Yessenbayeva A; Yazici A
    Wearable Technol; 2024; 5():e10. PubMed ID: 38617469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring.
    Bhattacharya D; Sharma D; Kim W; Ijaz MF; Singh PK
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems.
    Sahoo KK; Ghosh R; Mallik S; Roy A; Singh PK; Zhao Z
    Sci Rep; 2023 Jan; 13(1):965. PubMed ID: 36653370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Activity Recognition Using Attention-Mechanism-Based Deep Learning Feature Combination.
    Akter M; Ansary S; Khan MA; Kim D
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable Sensor-Based Human Activity Recognition with Transformer Model.
    Dirgová Luptáková I; Kubovčík M; Pospíchal J
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Convolutional Neural Networks Training With Channel-Selectivity for Human Activity Recognition Based on Sensors.
    Huang W; Zhang L; Teng Q; Song C; He J
    IEEE J Biomed Health Inform; 2021 Oct; 25(10):3834-3843. PubMed ID: 34170835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data Valuation Algorithm for Inertial Measurement Unit-Based Human Activity Recognition.
    Kim YW; Lee S
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal Sparse Transformer Network for Audio-Visual Speech Recognition.
    Song Q; Sun B; Li S
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):10028-10038. PubMed ID: 35412992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep SE-BiLSTM with IFPOA Fine-Tuning for Human Activity Recognition Using Mobile and Wearable Sensors.
    Jameer S; Syed H
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TCN-attention-HAR: human activity recognition based on attention mechanism time convolutional network.
    Wei X; Wang Z
    Sci Rep; 2024 Mar; 14(1):7414. PubMed ID: 38548859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor.
    Khatun MA; Yousuf MA; Ahmed S; Uddin MZ; Alyami SA; Al-Ashhab S; Akhdar HF; Khan A; Azad A; Moni MA
    IEEE J Transl Eng Health Med; 2022; 10():2700316. PubMed ID: 35795873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-Attention Enhanced Pyramid Multi-Scale Networks for Sensor-Based Human Activity Recognition.
    Pang H; Zheng L; Fang H
    IEEE J Biomed Health Inform; 2024 May; 28(5):2733-2744. PubMed ID: 38483804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contextual Transformer Networks for Visual Recognition.
    Li Y; Yao T; Pan Y; Mei T
    IEEE Trans Pattern Anal Mach Intell; 2023 Feb; 45(2):1489-1500. PubMed ID: 35363608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust Feature Representation Using Multi-Task Learning for Human Activity Recognition.
    Azadi B; Haslgrübler M; Anzengruber-Tanase B; Sopidis G; Ferscha A
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformer and group parallel axial attention co-encoder for medical image segmentation.
    Li C; Wang L; Li Y
    Sci Rep; 2022 Sep; 12(1):16117. PubMed ID: 36167743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.