These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38029016)

  • 1. Engineering
    Agrawal A; Yang Z; Blenner M
    Metab Eng Commun; 2023 Dec; 17():e00228. PubMed ID: 38029016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae.
    Jiang GZ; Yao MD; Wang Y; Zhou L; Song TQ; Liu H; Xiao WH; Yuan YJ
    Metab Eng; 2017 May; 41():57-66. PubMed ID: 28359705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.
    Zhao J; Bao X; Li C; Shen Y; Hou J
    Appl Microbiol Biotechnol; 2016 May; 100(10):4561-71. PubMed ID: 26883346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the oleaginous yeast
    Pang Y; Zhao Y; Li S; Zhao Y; Li J; Hu Z; Zhang C; Xiao D; Yu A
    Biotechnol Biofuels; 2019; 12():241. PubMed ID: 31624503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves.
    Kumar K; Kumar SR; Dwivedi V; Rai A; Shukla AK; Shanker K; Nagegowda DA
    Plant Sci; 2015 Oct; 239():56-66. PubMed ID: 26398791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering oleaginous yeast Yarrowia lipolytica for enhanced limonene production from xylose and lignocellulosic hydrolysate.
    Yao F; Liu SC; Wang DN; Liu ZJ; Hua Q; Wei LJ
    FEMS Yeast Res; 2020 Sep; 20(6):. PubMed ID: 32840573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yarrowia lipolytica construction for heterologous synthesis of α-santalene and fermentation optimization.
    Jia D; Xu S; Sun J; Zhang C; Li D; Lu W
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3511-3520. PubMed ID: 30863877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering.
    Jin CC; Zhang JL; Song H; Cao YX
    Microb Cell Fact; 2019 May; 18(1):77. PubMed ID: 31053076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica.
    Lu Y; Yang Q; Lin Z; Yang X
    Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced production of amyrin in Yarrowia lipolytica using a combinatorial protein and metabolic engineering approach.
    Kong J; Miao L; Lu Z; Wang S; Zhao B; Zhang C; Xiao D; Teo D; Leong SSJ; Wong A; Yu A
    Microb Cell Fact; 2022 Sep; 21(1):186. PubMed ID: 36085205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway engineering and medium optimization for α-farnesene biosynthesis in oleaginous yeast Yarrowia lipolytica.
    Liu SC; Liu Z; Wei LJ; Hua Q
    J Biotechnol; 2020 Aug; 319():74-81. PubMed ID: 32533992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous production of α-farnesene in metabolically engineered strains of Yarrowia lipolytica.
    Yang X; Nambou K; Wei L; Hua Q
    Bioresour Technol; 2016 Sep; 216():1040-8. PubMed ID: 27347651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Yarrowia lipolytica for improving squalene production.
    Tang WY; Wang DP; Tian Y; Fan X; Wang C; Lu XY; Li PW; Ji XJ; Liu HH
    Bioresour Technol; 2021 Mar; 323():124652. PubMed ID: 33421835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced β-carotene production in Yarrowia lipolytica through the metabolic and fermentation engineering.
    Jing Y; Wang J; Gao H; Jiang Y; Jiang W; Jiang M; Xin F; Zhang W
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 37055369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promoting the Synthesis of Precursor Substances by Overexpressing Hexokinase (Hxk) and Hydroxymethylglutaryl-CoA Synthase (Erg13) to Elevate β-Carotene Production in Engineered
    Qiang S; Wang J; Xiong XC; Qu YL; Liu L; Hu CY; Meng YH
    Front Microbiol; 2020; 11():1346. PubMed ID: 32636824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overproduction of Fatty Acid Ethyl Esters by the Oleaginous Yeast Yarrowia lipolytica through Metabolic Engineering and Process Optimization.
    Gao Q; Cao X; Huang YY; Yang JL; Chen J; Wei LJ; Hua Q
    ACS Synth Biol; 2018 May; 7(5):1371-1380. PubMed ID: 29694786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Yarrowia lipolytica towards food waste bioremediation: Production of fatty acid ethyl esters from vegetable cooking oil.
    Ng TK; Yu AQ; Ling H; Pratomo Juwono NK; Choi WJ; Leong SSJ; Chang MW
    J Biosci Bioeng; 2020 Jan; 129(1):31-40. PubMed ID: 31320262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of oleaginous yeast
    Cao X; Lv YB; Chen J; Imanaka T; Wei LJ; Hua Q
    Biotechnol Biofuels; 2016; 9():214. PubMed ID: 27777617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism.
    Huang YY; Jian XX; Lv YB; Nian KQ; Gao Q; Chen J; Wei LJ; Hua Q
    J Biotechnol; 2018 Sep; 281():106-114. PubMed ID: 29986837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica.
    Zhang XK; Wang DN; Chen J; Liu ZJ; Wei LJ; Hua Q
    Biotechnol Lett; 2020 Jun; 42(6):945-956. PubMed ID: 32090297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.