These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 3802920)
1. Chromosomal homoeologies in hamster species of the genus Phodopus (Rodentia, Cricetinae). Schmid M; Haaf T; Weis H; Schempp W Cytogenet Cell Genet; 1986; 43(3-4):168-73. PubMed ID: 3802920 [TBL] [Abstract][Full Text] [Related]
2. The involvement of repetitive sequences in the remodelling of karyotypes: the Phodopus genomes (Rodentia, Cricetidae). Paço A; Chaves R; Vieira-da-Silva A; Adega F Micron; 2013 Mar; 46():27-34. PubMed ID: 23280178 [TBL] [Abstract][Full Text] [Related]
3. Tandem and centric fusions in the chromosomal evolution of the South American phyllotines of the genus Auliscomys (Rodentia, cricetidae). Walker LI; Spotorno AE Cytogenet Cell Genet; 1992; 61(2):135-40. PubMed ID: 1395723 [TBL] [Abstract][Full Text] [Related]
4. Chromosomal interrelationship of hamster species of the genus Mesocricetus. Popescu NC; DePaolo JA Cytogenet Cell Genet; 1980; 28(1-2):10-23. PubMed ID: 7449429 [TBL] [Abstract][Full Text] [Related]
5. Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison. Romanenko SA; Volobouev VT; Perelman PL; Lebedev VS; Serdukova NA; Trifonov VA; Biltueva LS; Nie W; O'Brien PC; Bulatova NSh; Ferguson-Smith MA; Yang F; Graphodatsky AS Chromosome Res; 2007; 15(3):283-97. PubMed ID: 17333534 [TBL] [Abstract][Full Text] [Related]
6. The puzzling character of repetitive DNA in Phodopus genomes (Cricetidae, Rodentia). Paço A; Adega F; Meštrović N; Plohl M; Chaves R Chromosome Res; 2015 Sep; 23(3):427-40. PubMed ID: 26281779 [TBL] [Abstract][Full Text] [Related]
7. Comparative cytogenetics of hamsters of the genus Allocricetulus argyropulo 1932 (Cricetidae, Rodentia). Romanenko SA; Lebedev VS; Serdukova NA; Feoktistova NY; Surov AV; Graphodatsky AS Cytogenet Genome Res; 2013; 139(4):258-66. PubMed ID: 23328385 [TBL] [Abstract][Full Text] [Related]
8. C-banding karyotype and relationship of the dipodids Allactaga and Jaculus (Mammalia: Rodentia) in Egypt. Shahin AA; Ata AT Folia Biol (Krakow); 2004; 52(1-2):25-31. PubMed ID: 15521644 [TBL] [Abstract][Full Text] [Related]
9. Diversity and Karyotypic Evolution in the Genus Neacomys (Rodentia, Sigmodontinae). da Silva WO; Pieczarka JC; Rossi RV; Schneider H; Sampaio I; Miranda CL; da Silva CR; Cardoso EM; Nagamachi CY Cytogenet Genome Res; 2015; 146(4):296-305. PubMed ID: 26587770 [TBL] [Abstract][Full Text] [Related]
10. [Karyotypes and chromosomal differentiation of two species of the genus Tachyoryctes (Rodentia, Tachyoryctinae) from Ethiopia]. Aniskii VM; Lavrenchenko LA; Varshavskiĭ AA; Milishnikov AN Genetika; 1997 Sep; 33(9):1266-72. PubMed ID: 9445818 [TBL] [Abstract][Full Text] [Related]
11. [Chromosomal phylogeny of four Meriones (Rodentia, Gerbillidae) species (author's transl)]. Benazzou T; Viegas-Pequignot E; Petter F; Dutrillaux B Ann Genet; 1982; 25(1):19-24. PubMed ID: 6979295 [TBL] [Abstract][Full Text] [Related]
12. Tandem fusion, centric fusion, and chromosomal evolution in the cotton rats, genus Sigmodon. Elder FF Cytogenet Cell Genet; 1980; 26(2-4):199-210. PubMed ID: 7389411 [TBL] [Abstract][Full Text] [Related]
13. Location of nucleolar organizing regions on the chromosomes of the Syrian hamster (Mesocricetus auratus) and the Djungarian hamster (Phodopus sungorus). Bigger TR; Savage JR Cytogenet Cell Genet; 1976; 16(6):495-504. PubMed ID: 975935 [TBL] [Abstract][Full Text] [Related]
14. Karyotype reorganisation in the subtilis group of birch mice (Rodentia, Dipodidae, Sicista): unexpected taxonomic diversity within a limited distribution. Kovalskaya YM; Aniskin VM; Bogomolov PL; Surov AV; Tikhonov IA; Tikhonova GN; Robinson TJ; Volobouev VT Cytogenet Genome Res; 2011; 132(4):271-88. PubMed ID: 21212647 [TBL] [Abstract][Full Text] [Related]
15. Using chromosomal data in the phylogenetic and molecular dating framework: karyotype evolution and diversification in Nierembergia (Solanaceae) influenced by historical changes in sea level. Acosta MC; Moscone EA; Cocucci AA Plant Biol (Stuttg); 2016 May; 18(3):514-26. PubMed ID: 26718314 [TBL] [Abstract][Full Text] [Related]
16. Karyotypic and molecular evidence supports the endemic Tibetan hamsters as a separate divergent lineage of Cricetinae. Romanenko SA; Lebedev VS; Bannikova AA; Pavlova SV; Serdyukova NA; Feoktistova NY; Jiapeng Q; Yuehua S; Surov AV; Graphodatsky AS Sci Rep; 2021 May; 11(1):10557. PubMed ID: 34006914 [TBL] [Abstract][Full Text] [Related]
18. Chromosomal phylogeny of Lagothrix, Brachyteles, and Cacajao. Viegas Péquignot E; Koiffmann CP; Dutrillaux B Cytogenet Cell Genet; 1985; 39(2):99-104. PubMed ID: 4006525 [TBL] [Abstract][Full Text] [Related]
19. Comparative chromosome painting map between two Ryukyu spiny rat species, Tokudaia osimensis and Tokudaia tokunoshimensis (Muridae, Rodentia). Nakamura T; Kuroiwa A; Nishida-Umehara C; Matsubara K; Yamada F; Matsuda Y Chromosome Res; 2007; 15(6):799-806. PubMed ID: 17874214 [TBL] [Abstract][Full Text] [Related]
20. Evolutionary conserved chromosomal segments in the human karyotype are bounded by unstable chromosome bands. Ruiz-Herrera A; García F; Mora L; Egozcue J; Ponsà M; Garcia M Cytogenet Genome Res; 2005; 108(1-3):161-74. PubMed ID: 15545726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]