These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38029409)

  • 1. Quantum Plasmonics in Sub-Atom-Thick Optical Slots.
    Baumberg JJ; Esteban R; Hu S; Muniain U; Silkin IV; Aizpurua J; Silkin VM
    Nano Lett; 2023 Dec; 23(23):10696-10702. PubMed ID: 38029409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inelastic Light Scattering in the Vicinity of a Single-Atom Quantum Point Contact in a Plasmonic Picocavity.
    Liu S; Bonafe FP; Appel H; Rubio A; Wolf M; Kumagai T
    ACS Nano; 2023 Jun; 17(11):10172-10180. PubMed ID: 37183801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect.
    Urbieta M; Barbry M; Zhang Y; Koval P; Sánchez-Portal D; Zabala N; Aizpurua J
    ACS Nano; 2018 Jan; 12(1):585-595. PubMed ID: 29298379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities.
    Sigle DO; Mertens J; Herrmann LO; Bowman RW; Ithurria S; Dubertret B; Shi Y; Yang HY; Tserkezis C; Aizpurua J; Baumberg JJ
    ACS Nano; 2015 Jan; 9(1):825-30. PubMed ID: 25495220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing the quantum regime in tunnelling plasmonics.
    Savage KJ; Hawkeye MM; Esteban R; Borisov AG; Aizpurua J; Baumberg JJ
    Nature; 2012 Nov; 491(7425):574-7. PubMed ID: 23135399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics.
    Barbry M; Koval P; Marchesin F; Esteban R; Borisov AG; Aizpurua J; Sánchez-Portal D
    Nano Lett; 2015 May; 15(5):3410-9. PubMed ID: 25915173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending Plasmonic Enhancement Limit with Blocked Electron Tunneling by Monolayer Hexagonal Boron Nitride.
    Chen S; Li P; Zhang C; Wu W; Zhou G; Zhang C; Weng S; Ding T; Wu DY; Yang L
    Nano Lett; 2023 Jun; 23(12):5445-5452. PubMed ID: 36995130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplified Plasmonic Forces from DNA Origami-Scaffolded Single Dyes in Nanogaps.
    Rocchetti S; Ohmann A; Chikkaraddy R; Kang G; Keyser UF; Baumberg JJ
    Nano Lett; 2023 Jul; 23(13):5959-5966. PubMed ID: 37364270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling Single Photons from Discrete Quantum Emitters in WSe
    Blauth M; Jürgensen M; Vest G; Hartwig O; Prechtl M; Cerne J; Finley JJ; Kaniber M
    Nano Lett; 2018 Nov; 18(11):6812-6819. PubMed ID: 30153417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic-scale confinement of resonant optical fields.
    Kern J; Grossmann S; Tarakina NV; Häckel T; Emmerling M; Kamp M; Huang JS; Biagioni P; Prangsma JC; Hecht B
    Nano Lett; 2012 Nov; 12(11):5504-9. PubMed ID: 22984927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear Graphene Nanoplasmonics.
    Cox JD; García de Abajo FJ
    Acc Chem Res; 2019 Sep; 52(9):2536-2547. PubMed ID: 31448890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic luminescence blinking from plasmonic nanojunctions.
    Chen W; Roelli P; Ahmed A; Verlekar S; Hu H; Banjac K; Lingenfelder M; Kippenberg TJ; Tagliabue G; Galland C
    Nat Commun; 2021 May; 12(1):2731. PubMed ID: 34021133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism.
    Tognalli NG; Cortés E; Hernández-Nieves AD; Carro P; Usaj G; Balseiro CA; Vela ME; Salvarezza RC; Fainstein A
    ACS Nano; 2011 Jul; 5(7):5433-43. PubMed ID: 21675769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Light Is Emitted by Plasmonic Metals.
    Mertens J; Kleemann ME; Chikkaraddy R; Narang P; Baumberg JJ
    Nano Lett; 2017 Apr; 17(4):2568-2574. PubMed ID: 28267346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slot optical waveguide usage in forming passive optical devices.
    Iqbal M; Zheng Z; Liu JS
    Recent Pat Nanotechnol; 2012 Jan; 6(1):73-7. PubMed ID: 21875406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.
    Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA
    ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Emitting Plexciton: Exploiting Plasmon-Exciton Interaction in the Intermediate Coupling Regime.
    Sun J; Hu H; Zheng D; Zhang D; Deng Q; Zhang S; Xu H
    ACS Nano; 2018 Oct; 12(10):10393-10402. PubMed ID: 30222317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.
    Zhu W; Crozier KB
    Nat Commun; 2014 Oct; 5():5228. PubMed ID: 25311008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.