These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38029464)

  • 1. Enhancing flexibility and strength-to-weight ratio of polymeric stents: A new variable-thickness design approach.
    Khatami M; Doniavi A; Abazari AM; Fotouhi M
    J Mech Behav Biomed Mater; 2024 Feb; 150():106262. PubMed ID: 38029464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Future Balloon-Expandable Stents: High or Low-Strength Materials?
    Khalilimeybodi A; Alishzadeh Khoei A; Sharif-Kashani B
    Cardiovasc Eng Technol; 2020 Apr; 11(2):188-204. PubMed ID: 31836964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure design and mechanical performance analysis of three kinds of bioresorbable poly-lactic acid (PLA) stents.
    Wang Y; Wu H; Fan S; Wu J; Yang S
    Comput Methods Biomech Biomed Engin; 2023 Jan; 26(1):25-37. PubMed ID: 35341394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analyses for improved design of peripheral stents.
    Lim YH; Jeong HY
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):653-662. PubMed ID: 28349767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of stent structure on stent flexibility measurements.
    Mori K; Saito T
    Ann Biomed Eng; 2005 Jun; 33(6):733-42. PubMed ID: 16078613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies.
    Lin M; Firoozi N; Tsai CT; Wallace MB; Kang Y
    Acta Biomater; 2019 Jan; 83():119-129. PubMed ID: 30366130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Computational Framework Examining the Mechanical Behaviour of Bare and Polymer-Covered Self-Expanding Laser-Cut Stents.
    McKenna CG; Vaughan TJ
    Cardiovasc Eng Technol; 2022 Jun; 13(3):466-480. PubMed ID: 34850370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study on the deformation behavior and mechanical properties of new lower extremity arterial stents.
    Feng H; Shi X; Wang T; Wang K; Su J
    Comput Methods Programs Biomed; 2024 Apr; 247():108094. PubMed ID: 38401508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical behavior of fully expanded commercially available endovascular coronary stents.
    Tambaca J; Canic S; Kosor M; Fish RD; Paniagua D
    Tex Heart Inst J; 2011; 38(5):491-501. PubMed ID: 22163122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent.
    Debusschere N; Segers P; Dubruel P; Verhegghe B; De Beule M
    J Biomech; 2015 Jul; 48(10):2012-8. PubMed ID: 25907549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bending behaviors of fully covered biodegradable polydioxanone biliary stent for human body by finite element method.
    Liu Y; Zhu G; Yang H; Wang C; Zhang P; Han G
    J Mech Behav Biomed Mater; 2018 Jan; 77():157-163. PubMed ID: 28917130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental evaluation of the mechanics of bare and polymer-covered self-expanding wire braided stents.
    McKenna CG; Vaughan TJ
    J Mech Behav Biomed Mater; 2020 Mar; 103():103549. PubMed ID: 31783281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Comparison of the Mechanical Behavior of Aortic Stent-Grafts Derived from Auxetic Unit Cells.
    Vellaparambil R; Han WS; Di Giovanni P; Avril S
    Cardiovasc Eng Technol; 2024 Apr; 15(2):199-210. PubMed ID: 38110763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparative study on the mechanical properties of lower limb arterial stents under various deformation modes].
    Wang T; Feng H; Wang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):303-309. PubMed ID: 33913290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical design of an intracranial stent for treating cerebral aneurysms.
    Shobayashi Y; Tanoue T; Tateshima S; Tanishita K
    Med Eng Phys; 2010 Nov; 32(9):1015-24. PubMed ID: 20675176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations.
    Qiu TY; Zhao LG; Song M
    Cardiovasc Eng Technol; 2019 Mar; 10(1):46-60. PubMed ID: 30536211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative reliability and performance study of different stent designs in terms of mechanical properties: foreshortening, recoil, radial force, and flexibility.
    Kim DB; Choi H; Joo SM; Kim HK; Shin JH; Hwang MH; Choi J; Kim DG; Lee KH; Lim CH; Yoo SK; Lee HM; Sun K
    Artif Organs; 2013 Apr; 37(4):368-79. PubMed ID: 23461583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element analysis and stent design: Reduction of dogboning.
    De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P
    Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Design and mechanical properties of biodegradable polymeric stent].
    Chen Y; Wang G; Chen C; Sun A; Feng W; Jiang W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Dec; 37(6):967-973. PubMed ID: 33369335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.