These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38029464)

  • 21. An investigation into patient-specific 3D printed titanium stents and the use of etching to overcome Selective Laser Melting design constraints.
    McGee OM; Geraghty S; Hughes C; Jamshidi P; Kenny DP; Attallah MM; Lally C
    J Mech Behav Biomed Mater; 2022 Oct; 134():105388. PubMed ID: 36041274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design optimization of stent and its dilatation balloon using kriging surrogate model.
    Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B
    Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical behavior of coronary stents investigated through the finite element method.
    Migliavacca F; Petrini L; Colombo M; Auricchio F; Pietrabissa R
    J Biomech; 2002 Jun; 35(6):803-11. PubMed ID: 12021000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical investigations of the mechanical properties of braided vascular stents.
    Fu W; Xia Q; Yan R; Qiao A
    Biomed Mater Eng; 2018; 29(1):81-94. PubMed ID: 29254075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents.
    Wang Q; Fang G; Zhao Y; Wang G; Cai T
    J Mech Behav Biomed Mater; 2017 Jan; 65():415-427. PubMed ID: 27643678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational analysis of the radial mechanical performance of PLLA coronary artery stents.
    Pauck RG; Reddy BD
    Med Eng Phys; 2015 Jan; 37(1):7-12. PubMed ID: 25456397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational Analysis of the Utilisation of the Shape Memory Effect and Balloon Expansion in Fully Polymeric Stent Deployment.
    Bobel AC; McHugh PE
    Cardiovasc Eng Technol; 2018 Mar; 9(1):60-72. PubMed ID: 29243163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulated Bench Testing to Evaluate the Mechanical Performance of New Carotid Stents.
    Kumar GP; Kabinejadian F; Liu J; Ho P; Leo HL; Cui F
    Artif Organs; 2017 Mar; 41(3):267-272. PubMed ID: 27357068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study on the bending behavior of biodegradable metal cerebral vascular stents using finite element analysis.
    Shi W; Li H; Zhu T; Jin Y; Wang H; Yang J; Zhao D
    J Biomech; 2020 Jul; 108():109856. PubMed ID: 32635992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite element simulation and testing of cobalt-chromium stent: a parametric study on radial strength, recoil, foreshortening, and dogboning.
    Kumar A; Bhatnagar N
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(3):245-259. PubMed ID: 33021106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterizing the expansive deformation of a bioresorbable polymer fiber stent.
    Welch T; Eberhart RC; Chuong CJ
    Ann Biomed Eng; 2008 May; 36(5):742-51. PubMed ID: 18264765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of stents exhibiting negative Poisson's ratio effect.
    Raamachandran J; Jayavenkateshwaran K
    Comput Methods Biomech Biomed Engin; 2007 Aug; 10(4):245-55. PubMed ID: 17671858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A biodegradable magnesium alloy vascular stent structure: Design, optimisation and evaluation.
    Li Y; Wang Y; Shen Z; Miao F; Wang J; Sun Y; Zhu S; Zheng Y; Guan S
    Acta Biomater; 2022 Apr; 142():402-412. PubMed ID: 35085798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of Fatigue Strength and Reliability of Lower Limb Arterial Stent at Different Vascular Stenosis Rates and Stent-to-Artery Ratios.
    Ma S; Feng H; Feng H; Su J
    Ann Biomed Eng; 2023 Jun; 51(6):1136-1146. PubMed ID: 36939956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-objective design optimization of bioresorbable braided stents.
    Carbonaro D; Lucchetti A; Audenino AL; Gries T; Vaughan TJ; Chiastra C
    Comput Methods Programs Biomed; 2023 Dec; 242():107781. PubMed ID: 37683458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A finite element investigation on design parameters of bare and polymer-covered self-expanding wire braided stents.
    McKenna CG; Vaughan TJ
    J Mech Behav Biomed Mater; 2021 Mar; 115():104305. PubMed ID: 33454463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D printing technology and its revolutionary role in stent implementation in cardiovascular disease.
    Khan MA; Khan N; Ullah M; Hamayun S; Makhmudov NI; Mbbs R; Safdar M; Bibi A; Wahab A; Naeem M; Hasan N
    Curr Probl Cardiol; 2024 Jun; 49(6):102568. PubMed ID: 38599562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of design parameters on the radial force of percutaneous aortic valve stents.
    Kumar GV; Mathew L
    Cardiovasc Revasc Med; 2010; 11(2):101-4. PubMed ID: 20347800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Finite element analysis of the expansion behavior of coronary stents].
    Wang W; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1258-62, 1266. PubMed ID: 17228721
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical modeling of bare and polymer-covered braided stents using torsional and tensile springs connectors.
    Giuliodori A; Hernández JA; Fernandez-Sanchez D; Galve I; Soudah E
    J Biomech; 2021 Jun; 123():110459. PubMed ID: 34022531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.