These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 38029635)

  • 21. Adaptability to Balance Perturbations During Walking as a Potential Marker of Falls History in Older Adults.
    Gerards MHG; Meijer K; Karamanidis K; Grevendonk L; Hoeks J; Lenssen AF; McCrum C
    Front Sports Act Living; 2021; 3():682861. PubMed ID: 34095828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gait stability in response to platform, belt, and sensory perturbations in young and older adults.
    Roeles S; Rowe PJ; Bruijn SM; Childs CR; Tarfali GD; Steenbrink F; Pijnappels M
    Med Biol Eng Comput; 2018 Dec; 56(12):2325-2335. PubMed ID: 29946955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The motor repertoire of older adult fallers may constrain their response to balance perturbations.
    Allen JL; Franz JR
    J Neurophysiol; 2018 Nov; 120(5):2368-2378. PubMed ID: 30133380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can treadmill-slip perturbation training reduce immediate risk of over-ground-slip induced fall among community-dwelling older adults?
    Wang Y; Bhatt T; Liu X; Wang S; Lee A; Wang E; Pai YC
    J Biomech; 2019 Feb; 84():58-66. PubMed ID: 30616984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The metabolic cost of walking balance control and adaptation in young adults.
    Ahuja S; Franz JR
    Gait Posture; 2022 Jul; 96():190-194. PubMed ID: 35696824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A single session of perturbation-based gait training with the A-TPAD improves dynamic stability in healthy young subjects.
    Martelli D; Kang J; Agrawal SK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():479-484. PubMed ID: 28813866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Provoking Artificial Slips and Trips towards Perturbation-Based Balance Training: A Narrative Review.
    Ferreira RN; Ribeiro NF; Figueiredo J; Santos CP
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exposure to trips and slips with increasing unpredictability while walking can improve balance recovery responses with minimum predictive gait alterations.
    Okubo Y; Brodie MA; Sturnieks DL; Hicks C; Carter H; Toson B; Lord SR
    PLoS One; 2018; 13(9):e0202913. PubMed ID: 30226887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Treadmill-based gait-slip training with reduced training volume could still prevent slip-related falls.
    Yang F; Cereceres P; Qiao M
    Gait Posture; 2018 Oct; 66():160-165. PubMed ID: 30195219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A pilot study on the feasibility and effectiveness of treadmill-based perturbations for assessing and improving walking stability in chronic obstructive pulmonary disease.
    McCrum C; Vaes AW; Delbressine JM; Koopman M; Liu WY; Willems P; Meijer K; Spruit MA
    Clin Biomech (Bristol, Avon); 2022 Jan; 91():105538. PubMed ID: 34823220
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retention of improvement in gait stability over 14 weeks due to trip-perturbation training is dependent on perturbation dose.
    König M; Epro G; Seeley J; Catalá-Lehnen P; Potthast W; Karamanidis K
    J Biomech; 2019 Feb; 84():243-246. PubMed ID: 30577971
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterizing slip-like responses during gait using an entire support surface perturbation: Comparisons to previously established slip methods.
    Huntley AH; Rajachandrakumar R; Schinkel-Ivy A; Mansfield A
    Gait Posture; 2019 Mar; 69():130-135. PubMed ID: 30708096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of the most common gait perturbations on the compensatory limb's ankle, knee, and hip moments during the first stepping response.
    Yoo D; Seo KH; Lee BC
    Gait Posture; 2019 Jun; 71():98-104. PubMed ID: 31031225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Does increased gait variability improve stability when faced with an expected balance perturbation during treadmill walking?
    Nestico J; Novak A; Perry SD; Mansfield A
    Gait Posture; 2021 May; 86():94-100. PubMed ID: 33711616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptation of Stability during Perturbed Walking in Parkinson's Disease.
    Martelli D; Luo L; Kang J; Kang UJ; Fahn S; Agrawal SK
    Sci Rep; 2017 Dec; 7(1):17875. PubMed ID: 29259237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic stability during split-belt walking and the relationship with step length symmetry.
    Darter BJ; Labrecque BA; Perera RA
    Gait Posture; 2018 May; 62():86-91. PubMed ID: 29533870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of the effects of mediolateral surface and foot placement perturbations on balance control and response strategies during walking.
    Brough LG; Neptune RR
    Gait Posture; 2024 Feb; 108():313-319. PubMed ID: 38199090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Older adults demonstrate interlimb transfer of reactive gait adaptations to repeated unpredictable gait perturbations.
    McCrum C; Karamanidis K; Grevendonk L; Zijlstra W; Meijer K
    Geroscience; 2020 Feb; 42(1):39-49. PubMed ID: 31776885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Individual muscle responses to mediolateral foot placement perturbations during walking.
    Brough LG; Neptune RR
    J Biomech; 2022 Aug; 141():111201. PubMed ID: 35764014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.