These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 38029722)
1. Riemannian frameworks for the harmonization of resting-state functional MRI scans. Honnorat N; Seshadri S; Killiany R; Blangero J; Glahn DC; Fox P; Habes M Med Image Anal; 2024 Jan; 91():103043. PubMed ID: 38029722 [TBL] [Abstract][Full Text] [Related]
2. Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Yu M; Linn KA; Cook PA; Phillips ML; McInnis M; Fava M; Trivedi MH; Weissman MM; Shinohara RT; Sheline YI Hum Brain Mapp; 2018 Nov; 39(11):4213-4227. PubMed ID: 29962049 [TBL] [Abstract][Full Text] [Related]
3. Covariance shrinkage can assess and improve functional connectomes. Honnorat N; Habes M Neuroimage; 2022 Aug; 256():119229. PubMed ID: 35460918 [TBL] [Abstract][Full Text] [Related]
4. Brain/MINDS beyond human brain MRI project: A protocol for multi-level harmonization across brain disorders throughout the lifespan. Koike S; Tanaka SC; Okada T; Aso T; Yamashita A; Yamashita O; Asano M; Maikusa N; Morita K; Okada N; Fukunaga M; Uematsu A; Togo H; Miyazaki A; Murata K; Urushibata Y; Autio J; Ose T; Yoshimoto J; Araki T; Glasser MF; Van Essen DC; Maruyama M; Sadato N; Kawato M; Kasai K; Okamoto Y; Hanakawa T; Hayashi T; Neuroimage Clin; 2021; 30():102600. PubMed ID: 33741307 [TBL] [Abstract][Full Text] [Related]
5. Resting-state functional MRI studies on infant brains: A decade of gap-filling efforts. Zhang H; Shen D; Lin W Neuroimage; 2019 Jan; 185():664-684. PubMed ID: 29990581 [TBL] [Abstract][Full Text] [Related]
6. Uncovering multi-site identifiability based on resting-state functional connectomes. Bari S; Amico E; Vike N; Talavage TM; Goñi J Neuroimage; 2019 Nov; 202():115967. PubMed ID: 31352124 [TBL] [Abstract][Full Text] [Related]
7. Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine. Watanabe T; Kessler D; Scott C; Angstadt M; Sripada C Neuroimage; 2014 Aug; 96():183-202. PubMed ID: 24704268 [TBL] [Abstract][Full Text] [Related]
8. Cross Atlas Remapping via Optimal Transport (CAROT): Creating connectomes for different atlases when raw data is not available. Dadashkarimi J; Karbasi A; Liang Q; Rosenblatt M; Noble S; Foster M; Rodriguez R; Adkinson B; Ye J; Sun H; Camp C; Farruggia M; Tejavibulya L; Dai W; Jiang R; Pollatou A; Scheinost D Med Image Anal; 2023 Aug; 88():102864. PubMed ID: 37352650 [TBL] [Abstract][Full Text] [Related]
9. Uncovering shape signatures of resting-state functional connectivity by geometric deep learning on Riemannian manifold. Dan T; Huang Z; Cai H; Lyday RG; Laurienti PJ; Wu G Hum Brain Mapp; 2022 Sep; 43(13):3970-3986. PubMed ID: 35538672 [TBL] [Abstract][Full Text] [Related]
11. The significance of negative correlations in brain connectivity. Zhan L; Jenkins LM; Wolfson OE; GadElkarim JJ; Nocito K; Thompson PM; Ajilore OA; Chung MK; Leow AD J Comp Neurol; 2017 Oct; 525(15):3251-3265. PubMed ID: 28675490 [TBL] [Abstract][Full Text] [Related]
12. Style transfer generative adversarial networks to harmonize multisite MRI to a single reference image to avoid overcorrection. Liu M; Zhu AH; Maiti P; Thomopoulos SI; Gadewar S; Chai Y; Kim H; Jahanshad N; Hum Brain Mapp; 2023 Oct; 44(14):4875-4892. PubMed ID: 37471702 [TBL] [Abstract][Full Text] [Related]
13. Cross-scanner reproducibility and harmonization of a diffusion MRI structural brain network: A traveling subject study of multi-b acquisition. Kurokawa R; Kamiya K; Koike S; Nakaya M; Uematsu A; Tanaka SC; Kamagata K; Okada N; Morita K; Kasai K; Abe O Neuroimage; 2021 Dec; 245():118675. PubMed ID: 34710585 [TBL] [Abstract][Full Text] [Related]
14. A Multivariate Method for Estimating and comparing whole brain functional connectomes from fMRI and PET data. Saha DK; Bohsali A; Saha R; Hajjar I; Calhoun VD Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083351 [TBL] [Abstract][Full Text] [Related]
15. rest2vec: Vectorizing the resting-state functional connectome using graph embedding. Morrissey ZD; Zhan L; Ajilore O; Leow AD Neuroimage; 2021 Feb; 226():117538. PubMed ID: 33188880 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion. Wang YW; Chen X; Yan CG Neuroimage; 2023 Jul; 274():120089. PubMed ID: 37086875 [TBL] [Abstract][Full Text] [Related]
17. The Connectomes: Methods of White Matter Tractography and Contributions of Resting State fMRI. Moody JF; Adluru N; Alexander AL; Field AS Semin Ultrasound CT MR; 2021 Oct; 42(5):507-522. PubMed ID: 34537118 [TBL] [Abstract][Full Text] [Related]
18. Confounding Effects on the Performance of Machine Learning Analysis of Static Functional Connectivity Computed from rs-fMRI Multi-site Data. Artiles O; Al Masry Z; Saeed F Neuroinformatics; 2023 Oct; 21(4):651-668. PubMed ID: 37581850 [TBL] [Abstract][Full Text] [Related]
19. Predicting individual brain functional connectivity using a Bayesian hierarchical model. Dai T; Guo Y; Neuroimage; 2017 Feb; 147():772-787. PubMed ID: 27915121 [TBL] [Abstract][Full Text] [Related]
20. Identification of the Somatomotor Network from Language Task-based fMRI Compared with Resting-State fMRI in Patients with Brain Lesions. Beheshtian E; Jalilianhasanpour R; Modir Shanechi A; Sethi V; Wang G; Lindquist MA; Caffo BS; Agarwal S; Pillai JJ; Gujar SK; Sair HI Radiology; 2021 Oct; 301(1):178-184. PubMed ID: 34282966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]