These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38029843)

  • 1. Production of 1-methylxanthine via the biodegradation of theophylline by an optimized Escherichia coli strain.
    Mock MB; Zhang S; Pakulski K; Hutchison C; Kapperman M; Dreischarf T; Summers RM
    J Biotechnol; 2024 Jan; 379():25-32. PubMed ID: 38029843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed culture biocatalytic production of the high-value biochemical 7-methylxanthine.
    Mock MB; Summers RM
    J Biol Eng; 2023 Jan; 17(1):2. PubMed ID: 36627657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct conversion of theophylline to 3-methylxanthine by metabolically engineered E. coli.
    Algharrawi KH; Summers RM; Gopishetty S; Subramanian M
    Microb Cell Fact; 2015 Dec; 14():203. PubMed ID: 26691652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocatalytic production of 7-methylxanthine by a caffeine-degrading Escherichia coli strain.
    Mock MB; Cyrus A; Summers RM
    Biotechnol Bioeng; 2022 Nov; 119(11):3326-3331. PubMed ID: 36059194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5.
    Yu CL; Louie TM; Summers R; Kale Y; Gopishetty S; Subramanian M
    J Bacteriol; 2009 Jul; 191(14):4624-32. PubMed ID: 19447909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different Catabolism Pathways Triggered by Various Methylxanthines in Caffeine-Tolerant Bacterium
    Ma YX; Wu XH; Wu HS; Dong ZB; Ye JH; Zheng XQ; Liang YR; Lu J
    J Microbiol Biotechnol; 2018 Jul; 28(7):1147-1155. PubMed ID: 29926702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demethylation of theophylline (1,3-dimethylxanthine) to 1-methylxanthine: the first step of an antioxidising cascade.
    Santos PM; Silva SA; Justino GC; Vieira AJ
    Redox Rep; 2010; 15(3):138-44. PubMed ID: 20594417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel, highly specific N-demethylases enable bacteria to live on caffeine and related purine alkaloids.
    Summers RM; Louie TM; Yu CL; Gakhar L; Louie KC; Subramanian M
    J Bacteriol; 2012 Apr; 194(8):2041-9. PubMed ID: 22328667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LC-MS/MS-based metabolomic analysis of caffeine-degrading fungus Aspergillus sydowii during tea fermentation.
    Zhou B; Ma C; Ren X; Xia T; Li X
    J Food Sci; 2020 Feb; 85(2):477-485. PubMed ID: 31905425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactions of theophylline, theobromine and caffeine with Fenton's reagent--simulation of hepatic metabolism.
    Zbaida S; Kariv R; Fischer P; Gilhar D
    Xenobiotica; 1987 May; 17(5):617-21. PubMed ID: 3604265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of theophylline to caffeine in human fetal liver.
    Aranda JV; Louridas AT; Vitullo BB; Thom P; Aldridge A; Haber R
    Science; 1979 Dec; 206(4424):1319-21. PubMed ID: 515734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of theophylline to caffeine by the human fetus.
    Brazier JL; Salle B
    Semin Perinatol; 1981 Oct; 5(4):315-20. PubMed ID: 7302605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation, characterization and application of theophylline-degrading Aspergillus fungi.
    Zhou B; Ma C; Xia T; Li X; Zheng C; Wu T; Liu X
    Microb Cell Fact; 2020 Mar; 19(1):72. PubMed ID: 32192512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross validation of serum to saliva relationships of caffeine, theophylline and total methylxanthines in neonates.
    Khanna NN; Somani SM; Boyer A; Miller J; Chua C; Menke JA
    Dev Pharmacol Ther; 1982; 4(1-2):18-27. PubMed ID: 7117087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of methylxanthine-containing foods on theophylline metabolism and kinetics.
    Monks TJ; Caldwell J; Smith RL
    Clin Pharmacol Ther; 1979 Oct; 26(4):513-24. PubMed ID: 487699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioassay for Determining the Concentrations of Caffeine and Individual Methylxanthines in Complex Samples.
    Gutierrez AE; Shah P; Rex AE; Nguyen TC; Kenkare SP; Barrick JE; Mishler DM
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caffeine and theophylline metabolism in newborn and adult human hepatocytes; comparison with adult rat hepatocytes.
    Berthou F; Ratanasavanh D; Alix D; Carlhant D; Riche C; Guillouzo A
    Biochem Pharmacol; 1988 Oct; 37(19):3691-700. PubMed ID: 3178881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-Methylxanthine production through biodegradation of theobromine by Aspergillus sydowii PT-2.
    Zhou B; Ma C; Zheng C; Xia T; Ma B; Liu X
    BMC Microbiol; 2020 Aug; 20(1):269. PubMed ID: 32854634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution, biosynthesis and catabolism of methylxanthines in plants.
    Ashihara H; Kato M; Crozier A
    Handb Exp Pharmacol; 2011; (200):11-31. PubMed ID: 20859792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monkey liver cytochrome P450 2C9 is involved in caffeine 7-N-demethylation to form theophylline.
    Utoh M; Murayama N; Uno Y; Onose Y; Hosaka S; Fujino H; Shimizu M; Iwasaki K; Yamazaki H
    Xenobiotica; 2013 Dec; 43(12):1037-42. PubMed ID: 23679834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.