These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38029956)

  • 1. Animal-free assessment of developmental toxicity: Combining PBPK modeling with the ReproTracker assay.
    Moreau M; Jamalpoor A; Hall JC; Fisher J; Hartvelt S; Hendriks G; Nong A
    Toxicology; 2023 Dec; 500():153684. PubMed ID: 38029956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel human stem cell-based biomarker assay for in vitro assessment of developmental toxicity.
    Jamalpoor A; Hartvelt S; Dimopoulou M; Zwetsloot T; Brandsma I; Racz PI; Osterlund T; Hendriks G
    Birth Defects Res; 2022 Nov; 114(19):1210-1228. PubMed ID: 35289129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative in vitro to in vivo extrapolation for developmental toxicity potency of valproic acid analogues.
    Chang X; Palmer J; Lumen A; Lee UJ; Ceger P; Mansouri K; Sprankle C; Donley E; Bell S; Knudsen TB; Wambaugh J; Cook B; Allen D; Kleinstreuer N
    Birth Defects Res; 2022 Oct; 114(16):1037-1055. PubMed ID: 35532929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IVIVE-PBPK based new approach methodology for addressing early life toxicity induced by Bisphenol A.
    Ni M; Deepika D; Li X; Xiong W; Zhang L; Chen J; Kumar V
    Environ Res; 2024 Jan; 240(Pt 1):117343. PubMed ID: 37858691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of in vitro data in developing a physiologically based pharmacokinetic model: Carbaryl as a case study.
    Yoon M; Kedderis GL; Yan GZ; Clewell HJ
    Toxicology; 2015 Jun; 332():52-66. PubMed ID: 24863738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro-in silico-based probabilistic risk assessment of combined exposure to bisphenol A and its analogues by integrating ToxCast high-throughput in vitro assays with in vitro to in vivo extrapolation (IVIVE) via physiologically based pharmacokinetic (PBPK) modeling.
    Lin YJ; Lin Z
    J Hazard Mater; 2020 Nov; 399():122856. PubMed ID: 32937695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of in vitro toxicity data and physiologically based kinetic modeling to predict dose-response curves for in vivo developmental toxicity of glycol ethers in rat and man.
    Louisse J; de Jong E; van de Sandt JJ; Blaauboer BJ; Woutersen RA; Piersma AH; Rietjens IM; Verwei M
    Toxicol Sci; 2010 Dec; 118(2):470-84. PubMed ID: 20833708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-throughput screen for teratogens using human pluripotent stem cells.
    Kameoka S; Babiarz J; Kolaja K; Chiao E
    Toxicol Sci; 2014 Jan; 137(1):76-90. PubMed ID: 24154490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated fibroblast growth factor signal disruptions in human iPS cells for prediction of teratogenic toxicity of chemicals.
    Kanno S; Okubo Y; Kageyama T; Yan L; Fukuda J
    J Biosci Bioeng; 2022 Mar; 133(3):291-299. PubMed ID: 35034848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Species extrapolation of life-stage physiologically-based pharmacokinetic (PBPK) models to investigate the developmental toxicology of ethanol using in vitro to in vivo (IVIVE) methods.
    Martin SA; McLanahan ED; Bushnell PJ; Hunter ES; El-Masri H
    Toxicol Sci; 2015 Feb; 143(2):512-35. PubMed ID: 25410581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment and assessment of a new human embryonic stem cell-based biomarker assay for developmental toxicity screening.
    Palmer JA; Smith AM; Egnash LA; Conard KR; West PR; Burrier RE; Donley EL; Kirchner FR
    Birth Defects Res B Dev Reprod Toxicol; 2013 Aug; 98(4):343-63. PubMed ID: 24123775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of Toxicogenomics and Physiologically Based Pharmacokinetic Modeling in Human Health Risk Assessment of Perfluorooctane Sulfonate.
    Chen Q; Chou WC; Lin Z
    Environ Sci Technol; 2022 Mar; 56(6):3623-3633. PubMed ID: 35194992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating in vitro testing and physiologically-based pharmacokinetic (PBPK) modelling for chemical liver toxicity assessment-A case study of troglitazone.
    Yu L; Li H; Zhang C; Zhang Q; Guo J; Li J; Yuan H; Li L; Carmichael P; Peng S
    Environ Toxicol Pharmacol; 2020 Feb; 74():103296. PubMed ID: 31783317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probabilistic human health risk assessment of perfluorooctane sulfonate (PFOS) by integrating in vitro, in vivo toxicity, and human epidemiological studies using a Bayesian-based dose-response assessment coupled with physiologically based pharmacokinetic (PBPK) modeling approach.
    Chou WC; Lin Z
    Environ Int; 2020 Apr; 137():105581. PubMed ID: 32087483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Combined In Vitro Physiologically Based Kinetic (PBK) and Monte Carlo Modelling Approach to Predict Interindividual Human Variation in Phenol-Induced Developmental Toxicity.
    Strikwold M; Spenkelink B; Woutersen RA; Rietjens IMCM; Punt A
    Toxicol Sci; 2017 Jun; 157(2):365-376. PubMed ID: 28498972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel human pluripotent stem cell-based assay to predict developmental toxicity.
    Lauschke K; Rosenmai AK; Meiser I; Neubauer JC; Schmidt K; Rasmussen MA; Holst B; Taxvig C; Emnéus JK; Vinggaard AM
    Arch Toxicol; 2020 Nov; 94(11):3831-3846. PubMed ID: 32700165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of the contribution of whole embryo culture to the determination of hazard and risk in teratogenicity testing.
    Webster WS; Brown-Woodman PD; Ritchie HE
    Int J Dev Biol; 1997 Apr; 41(2):329-35. PubMed ID: 9184342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro-to-in vivo extrapolation (IVIVE) by PBTK modeling for animal-free risk assessment approaches of potential endocrine-disrupting compounds.
    Fabian E; Gomes C; Birk B; Williford T; Hernandez TR; Haase C; Zbranek R; van Ravenzwaay B; Landsiedel R
    Arch Toxicol; 2019 Feb; 93(2):401-416. PubMed ID: 30552464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of a human mesoderm tissue elongation system in vitro derived from human induced pluripotent stem cells to risk assessment for teratogenic chemicals.
    Ninomiya H; Intoh A; Ishimine H; Onuma Y; Ito Y; Michiue T; Tazaki A; Kato M
    Chemosphere; 2020 Jul; 250():126124. PubMed ID: 32092576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.