BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38029989)

  • 21. Responses of mixed methanotrophic consortia to variable Cu
    Chidambarampadmavathy K; Karthikeyan OP; Huerlimann R; Maes GE; Heimann K
    J Environ Manage; 2017 Jul; 197():159-166. PubMed ID: 28365562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screening and identification of polyhydroxyalkanoates producing bacteria and biochemical characterization of their possible application.
    Sangkharak K; Prasertsan P
    J Gen Appl Microbiol; 2012; 58(3):173-82. PubMed ID: 22878735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with varied composition using different nitrogen sources with Haloferax mediterranei.
    Ferre-Guell A; Winterburn J
    Extremophiles; 2017 Nov; 21(6):1037-1047. PubMed ID: 28988336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sustainable Process for the Production of Poly(3-hydroxybutyrate-
    Amabile C; Abate T; De Crescenzo C; Sabbarese S; Muñoz R; Chianese S; Musmarra D
    ACS Sustain Chem Eng; 2022 Oct; 10(43):14230-14239. PubMed ID: 36340972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels.
    Valentino F; Karabegovic L; Majone M; Morgan-Sagastume F; Werker A
    Water Res; 2015 Jun; 77():49-63. PubMed ID: 25846983
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyhydroxyalkanoate (PHA) production in open mixed cultures using waste activated sludge as biomass.
    Munir S; Jamil N
    Arch Microbiol; 2020 Sep; 202(7):1907-1913. PubMed ID: 32448962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biogas bioconversion into poly(3-hydroxybutyrate) by a mixed microbial culture in a novel Taylor flow bioreactor.
    Cattaneo CR; Rodríguez Y; Rene ER; García-Depraect O; Muñoz R
    Waste Manag; 2022 Aug; 150():364-372. PubMed ID: 35914413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome sequence of Methylocystis hirsuta CSC1, a polyhydroxyalkanoate producing methanotroph.
    Bordel S; Rodríguez E; Muñoz R
    Microbiologyopen; 2019 Jun; 8(6):e00771. PubMed ID: 30548837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of polyhydroxyalkanoates from fermented sugar cane molasses by a mixed culture enriched in glycogen accumulating organisms.
    Bengtsson S; Pisco AR; Reis MA; Lemos PC
    J Biotechnol; 2010 Feb; 145(3):253-63. PubMed ID: 19958801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methylosinus trichosporium OB3b bioaugmentation unleashes polyhydroxybutyrate-accumulating potential in waste-activated sludge.
    Eam H; Ko D; Lee C; Myung J
    Microb Cell Fact; 2024 May; 23(1):160. PubMed ID: 38822346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The utilization of glycogen accumulating organisms for mixed culture production of polyhydroxyalkanoates.
    Bengtsson S
    Biotechnol Bioeng; 2009 Nov; 104(4):698-708. PubMed ID: 19530079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accumulation of biopolymers in activated sludge biomass.
    Chua H; Yu PH; Ma CK
    Appl Biochem Biotechnol; 1999; 77-79():389-99. PubMed ID: 15304709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elucidating the influence of environmental factors on biogas-based polyhydroxybutyrate production by Methylocystis hirsuta CSC1.
    Rodríguez Y; Firmino PIM; Arnáiz E; Lebrero R; Muñoz R
    Sci Total Environ; 2020 Mar; 706():135136. PubMed ID: 31862586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture.
    Colombo B; Pepè Sciarria T; Reis M; Scaglia B; Adani F
    Bioresour Technol; 2016 Oct; 218():692-9. PubMed ID: 27420156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finding of novel lactate utilizing Bacillus sp. YHY22 and its evaluation for polyhydroxybutyrate (PHB) production.
    Lee HJ; Kim SG; Cho DH; Bhatia SK; Gurav R; Yang SY; Yang J; Jeon JM; Yoon JJ; Choi KY; Yang YH
    Int J Biol Macromol; 2022 Mar; 201():653-661. PubMed ID: 35038470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Response of mixed methanotrophic consortia to different methane to oxygen ratios.
    Chidambarampadmavathy K; Karthikeyan OP; Huerlimann R; Maes GE; Heimann K
    Waste Manag; 2017 Mar; 61():220-228. PubMed ID: 27876290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving polyhydroxyalkanoates production in phototrophic mixed cultures by optimizing accumulator reactor operating conditions.
    Fradinho JC; Oehmen A; Reis MAM
    Int J Biol Macromol; 2019 Apr; 126():1085-1092. PubMed ID: 30610947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integration of biopolymer production with process water treatment at a sugar factory.
    Anterrieu S; Quadri L; Geurkink B; Dinkla I; Bengtsson S; Arcos-Hernandez M; Alexandersson T; Morgan-Sagastume F; Karlsson A; Hjort M; Karabegovic L; Magnusson P; Johansson P; Christensson M; Werker A
    N Biotechnol; 2014 Jun; 31(4):308-23. PubMed ID: 24361532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon-dependent growth, community structure and methane oxidation performance of a soil-derived methanotrophic mixed culture.
    Praeg N; Schachner I; Schuster L; Illmer P
    FEMS Microbiol Lett; 2021 Feb; 368(2):. PubMed ID: 33320954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sludge retention time impacts on polyhydroxyalkanoate productivity in uncoupled storage/growth processes.
    Matos M; Cruz RAP; Cardoso P; Silva F; Freitas EB; Carvalho G; Reis MAM
    Sci Total Environ; 2021 Dec; 799():149363. PubMed ID: 34371408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.