These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38030345)

  • 1. The laboratory perspective: Confirming the integrity of fingermark enhancement reagents.
    King RSP; McNash B; Wilson R
    Sci Justice; 2023 Nov; 63(6):755-762. PubMed ID: 38030345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualising the past - An evaluation of processes and sequences for fingermark recovery from old documents.
    Bleay S; Fitzgerald L; Sears V; Kent T
    Sci Justice; 2019 Mar; 59(2):125-137. PubMed ID: 30798859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evaluation of inkjet printed amino acid fingerprint test targets for ninhydrin process monitoring - and some observations.
    Croxton R; Kent T; Littlewood A; Smith M
    Forensic Sci Int; 2021 Apr; 321():110741. PubMed ID: 33706072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positive control tests for fingermark development reagents.
    Janssen-Bouwmeester R; Bremmer C; Koomen L; Siem-Gorré S; de Puit M
    Forensic Sci Int; 2020 May; 310():110259. PubMed ID: 32224429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualising substrate-fingermark interactions: Solid-state NMR spectroscopy of amino acid reagent development on cellulose substrates.
    Spindler X; Shimmon R; Roux C; Lennard C
    Forensic Sci Int; 2015 May; 250():8-16. PubMed ID: 25766739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single metal deposition versus physical developer: A comparison between two advanced fingermark detection techniques.
    Moret S; Lee PLT; de la Hunty M; Spindler X; Lennard C; Roux C
    Forensic Sci Int; 2019 Jan; 294():103-112. PubMed ID: 30500490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of fingermark detection sequences on paper substrates.
    Marriott C; Lee R; Wilkes Z; Comber B; Spindler X; Roux C; Lennard C
    Forensic Sci Int; 2014 Mar; 236():30-7. PubMed ID: 24529772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of artificial fingermarks. Part I - Synthetic secretions formulation.
    Steiner R; Roux C; Moret S
    Forensic Sci Int; 2022 Feb; 331():111166. PubMed ID: 34973483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of efficacy of fingermark enhancement reagents; the use of propyl chloroformate for the derivatization of fingerprint amino acids extracted from paper.
    Mink T; Voorhaar A; Stoel R; de Puit M
    Sci Justice; 2013 Sep; 53(3):301-8. PubMed ID: 23937938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of fingermark on the surface of fired cartridge casing using amino acid sensitive reagents: Change of viewpoint.
    Hong S; Han A
    Forensic Sci Int; 2016 Sep; 266():86-90. PubMed ID: 27235594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Latent fingermark development on a range of porous substrates using ninhydrin analogs--a comparison with ninhydrin and 1,8-diazofluoren.
    Berdejo S; Rowe M; Bond JW
    J Forensic Sci; 2012 Mar; 57(2):509-14. PubMed ID: 22103855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of alizarin and purpurin dyes for their ability to visualize latent fingermark on porous surfaces.
    Berkil Akar K
    Sci Justice; 2021 Mar; 61(2):130-141. PubMed ID: 33736845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical analysis of pharmaceuticals and explosives in fingermarks using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry.
    Kaplan-Sandquist K; LeBeau MA; Miller ML
    Forensic Sci Int; 2014 Feb; 235():68-77. PubMed ID: 24447453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evaluation of the effect of incorporating metal salts into 1,8 diazafluoren-9-one (DFO) formulations for fingermark enhancement.
    Mayse K; Sears VG; Nicolasora N; Bleay S
    Sci Justice; 2019 May; 59(3):349-358. PubMed ID: 31054824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the use of chemical pads to mimic latent fingermarks for research purposes.
    Steiner R; Moret S; Roux C
    Forensic Sci Int; 2020 Sep; 314():110411. PubMed ID: 32688262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a printed quality control test strip for the analysis and imaging of fingermark composition.
    Gorka M; Thomas A; Bécue A
    Forensic Sci Int; 2021 Dec; 329():111063. PubMed ID: 34736048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ninhydrin thiohemiketals: basic research towards improved fingermark detection techniques employing nano-technology.
    Almog J; Glasner H
    J Forensic Sci; 2010 Jan; 55(1):215-20. PubMed ID: 20002273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards the integration of matrix assisted laser desorption ionisation mass spectrometry imaging into the current fingermark examination workflow.
    Bradshaw R; Bleay S; Wolstenholme R; Clench MR; Francese S
    Forensic Sci Int; 2013 Oct; 232(1-3):111-24. PubMed ID: 24053872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of Artificial Blood from the Extract of Legume Root Nodules, and the Creation of Artificial Latent Fingermarks in Blood Using Artificial Blood
    Hong S; Kim C; Jeon S; Lee E
    J Forensic Sci; 2018 Jan; 63(1):234-238. PubMed ID: 28271501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of artificial fingermarks. Part II - The use of a modified inkjet printer for the deposition of synthetic secretions.
    Steiner R; Moret S; Roux C
    Forensic Sci Int; 2023 Sep; 350():111804. PubMed ID: 37536074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.