These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38030659)
1. Synthesis of MWCNTs by chemical vapor deposition of methane using FeMo/MgO catalyst: role of hydrogen and kinetic study. Chotmunkhongsin C; Ratchahat S; Chaiwat W; Charinpanitkul T; Soottitantawat A Sci Rep; 2023 Nov; 13(1):21027. PubMed ID: 38030659 [TBL] [Abstract][Full Text] [Related]
2. Effects of Catalyst Pretreatment on Carbon Nanotube Synthesis from Methane Using Thin Stainless-Steel Foil as Catalyst by Chemical Vapor Deposition Method. Huynh TM; Nguyen S; Nguyen NTK; Nguyen HM; Do NUP; Nguyen DC; Nguyen LH; Nguyen CV Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33379133 [TBL] [Abstract][Full Text] [Related]
3. Temperature programmed CVD: a novel technique to investigate carbon nanotube synthesis on FeMo/MgO catalysts. Teixeira AP; Lemos BR; Magalhães LA; Ardisson JD; Lago RM; Furtado CA; Santos AP J Nanosci Nanotechnol; 2012 Mar; 12(3):2661-7. PubMed ID: 22755105 [TBL] [Abstract][Full Text] [Related]
4. Influencing factors and growth kinetics analysis of carbon nanotube growth on the surface of continuous fibers. Qin J; Wang C; Yao Z; Ma Z; Cui X; Gao Q; Wang Y; Wang Q; Wei H Nanotechnology; 2021 Apr; 32(28):. PubMed ID: 33823501 [TBL] [Abstract][Full Text] [Related]
5. Effects of feed gas composition and catalyst thickness on carbon nanotube and nanofiber synthesis by plasma enhanced chemical vapor deposition. Garg RK; Kim SS; Hash DB; Gore JP; Fisher TS J Nanosci Nanotechnol; 2008 Jun; 8(6):3068-76. PubMed ID: 18681048 [TBL] [Abstract][Full Text] [Related]
6. Comparing Ultralong Carbon Nanotube Growth from Methane over Mono- and Bi-Metallic Iron Chloride Catalysts. Yick T; Gangoli VS; Orbaek White A Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570489 [TBL] [Abstract][Full Text] [Related]
7. The influence of the potassium promoter on the kinetics and thermodynamics of CO adsorption on a bulk iron catalyst applied in Fischer-Tropsch synthesis: a quantitative adsorption calorimetry, temperature-programmed desorption, and surface hydrogenation study. Graf B; Muhler M Phys Chem Chem Phys; 2011 Mar; 13(9):3701-10. PubMed ID: 21170422 [TBL] [Abstract][Full Text] [Related]
9. Floating Fe Catalyst Formation and Effects of Hydrogen Environment in the Growth of Carbon Nanotubes. Lei J; Bets KV; Penev ES; Yakobson BI J Phys Chem Lett; 2023 May; 14(18):4266-4272. PubMed ID: 37126735 [TBL] [Abstract][Full Text] [Related]
10. Growth of few-wall carbon nanotubes with narrow diameter distribution over Fe-Mo-MgO catalyst by methane/acetylene catalytic decomposition. Labunov VA; Basaev AS; Shulitski BG; Shaman YP; Komissarov I; Prudnikava AL; Tay BK; Shakerzadeh M Nanoscale Res Lett; 2012 Feb; 7(1):102. PubMed ID: 22300375 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of carbon nanotubes via chemical vapor deposition: an advanced application in the Management of Electroplating Effluent. Verma B; Sewani H; Balomajumder C Environ Sci Pollut Res Int; 2020 Apr; 27(12):14007-14018. PubMed ID: 32036530 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method. Choi EC; Park YS; Hong B Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258 [TBL] [Abstract][Full Text] [Related]
13. Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes. Zhou LP; Ohta K; Kuroda K; Lei N; Matsuishi K; Gao L; Matsumoto T; Nakamura J J Phys Chem B; 2005 Mar; 109(10):4439-47. PubMed ID: 16851515 [TBL] [Abstract][Full Text] [Related]
14. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition. Jodin L; Dupuis AC; Rouvière E; Reiss P J Phys Chem B; 2006 Apr; 110(14):7328-33. PubMed ID: 16599506 [TBL] [Abstract][Full Text] [Related]
15. Development of high-performance nickel-based catalysts for production of hydrogen and carbon nanotubes from biogas. Saconsint S; Sae-Tang N; Srifa A; Koo-Amornpattana W; Assabumrungrat S; Fukuhara C; Ratchahat S Sci Rep; 2022 Sep; 12(1):15195. PubMed ID: 36071147 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of Carbon Nanotubes (CNTs) from Poultry Litter for Removal of Chromium (Cr (VI)) from Wastewater. Haleem N; Jamal Y; Khan SN; Baig MA; Wahab M; Yang X Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576419 [TBL] [Abstract][Full Text] [Related]
17. Toward Small-Diameter Carbon Nanotubes Synthesized from Captured Carbon Dioxide: Critical Role of Catalyst Coarsening. Douglas A; Carter R; Li M; Pint CL ACS Appl Mater Interfaces; 2018 Jun; 10(22):19010-19018. PubMed ID: 29715008 [TBL] [Abstract][Full Text] [Related]
18. Optimization of Synthesis Conditions of Carbon Nanotubes via Ultrasonic-Assisted Floating Catalyst Deposition Using Response Surface Methodology. Mohammadian N; Ghoreishi SM; Hafeziyeh S; Saeidi S; Dionysiou DD Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29747451 [TBL] [Abstract][Full Text] [Related]
19. Pyrolysis gas from biomass and plastics over X-Mo@MgO (X = Ni, Fe, Co) catalysts into functional carbon nanocomposite: Gas reforming reaction and proper process mechanisms. Dong H; Liu M; Yan X; Qian Z; Xie Y; Luo W; Lei C; Zhou Z Sci Total Environ; 2022 Jul; 831():154751. PubMed ID: 35341874 [TBL] [Abstract][Full Text] [Related]
20. Modeling of the carbon nanotube chemical vapor deposition process using methane and acetylene precursor gases. Lysaght AC; Chiu WK Nanotechnology; 2008 Apr; 19(16):165607. PubMed ID: 21825651 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]