These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38030659)
21. Utilization of greenhouse gases through dry reforming: screening of nickel-based bimetallic catalysts and kinetic studies. Fan MS; Abdullah AZ; Bhatia S ChemSusChem; 2011 Nov; 4(11):1643-53. PubMed ID: 22191096 [TBL] [Abstract][Full Text] [Related]
22. High-quality thin-multiwalled carbon nanotubes synthesized by Fe-Mo/MgO catalyst based on a sol-gel technique: synthesis, characterization, and field emission. Dubey P; Choi SK; Choi JH; Shin DH; Lee CJ J Nanosci Nanotechnol; 2010 Jun; 10(6):3998-4006. PubMed ID: 20355405 [TBL] [Abstract][Full Text] [Related]
23. Out-of-plane growth of CNTs on graphene for supercapacitor applications. Kim YS; Kumar K; Fisher FT; Yang EH Nanotechnology; 2012 Jan; 23(1):015301. PubMed ID: 22155846 [TBL] [Abstract][Full Text] [Related]
24. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials. Laycock CJ; Staniforth JZ; Ormerod RM Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706 [TBL] [Abstract][Full Text] [Related]
25. Partial Oxidation of Bio-methane over Nickel Supported on MgO-ZrO Asencios YJO; Yigit N; Wicht T; Stöger-Pollach M; Lucrédio AF; Marcos FCF; Assaf EM; Rupprechter G Top Catal; 2023; 66(19-20):1539-1552. PubMed ID: 37830054 [TBL] [Abstract][Full Text] [Related]
26. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Lam CW; James JT; McCluskey R; Arepalli S; Hunter RL Crit Rev Toxicol; 2006 Mar; 36(3):189-217. PubMed ID: 16686422 [TBL] [Abstract][Full Text] [Related]
27. CVD Conditions for MWCNTs Production and Their Effects on the Optical and Electrical Properties of PPy/MWCNTs, PANI/MWCNTs Nanocomposites by In Situ Electropolymerization. Brachetti-Sibaja SB; Palma-Ramírez D; Torres-Huerta AM; Domínguez-Crespo MA; Dorantes-Rosales HJ; Rodríguez-Salazar AE; Ramírez-Meneses E Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33499125 [TBL] [Abstract][Full Text] [Related]
28. Investigation of Fe/MgO catalyst support precursors for the chemical vapour deposition growth of carbon nanotubes. Palizdar M; Ahgababazadeh R; Mirhabibi A; Brydson R; Pilehvari S J Nanosci Nanotechnol; 2011 Jun; 11(6):5345-51. PubMed ID: 21770187 [TBL] [Abstract][Full Text] [Related]
29. Controlling the size and the activity of Fe particles for synthesis of carbon nanotubes. Chee SW; Sharma R Micron; 2012 Nov; 43(11):1181-7. PubMed ID: 22349468 [TBL] [Abstract][Full Text] [Related]
30. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes. Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797 [TBL] [Abstract][Full Text] [Related]
31. Isolating the Roles of Hydrogen Exposure and Trace Carbon Contamination on the Formation of Active Catalyst Populations for Carbon Nanotube Growth. Carpena-Núñez J; Boscoboinik JA; Saber S; Rao R; Zhong JQ; Maschmann MR; Kidambi PR; Dee NT; Zakharov DN; Hart AJ; Stach EA; Maruyama B ACS Nano; 2019 Aug; 13(8):8736-8748. PubMed ID: 31329425 [TBL] [Abstract][Full Text] [Related]
32. Converting polyolefin plastics into few-walled carbon nanotubes via a tandem catalytic process: Importance of gas composition and system configuration. Veksha A; Chen W; Liang L; Lisak G J Hazard Mater; 2022 Aug; 435():128949. PubMed ID: 35472542 [TBL] [Abstract][Full Text] [Related]
33. Corn Cob Char as Catalyst Support for Developing Carbon Nanotubes from Waste Polypropylene Plastics: Comparison of Activation Techniques. Modekwe HU; Moothi K; Daramola MO; Mamo MA Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890673 [TBL] [Abstract][Full Text] [Related]
34. Characterization of trimetallic Pt-Pd-Au/CeO2 catalysts combinatorial designed for methane total oxidation. Tompos A; Margitfalvi JL; Hegedus M; Szegedi A; Fierro JL; Rojas S Comb Chem High Throughput Screen; 2007 Jan; 10(1):71-82. PubMed ID: 17266518 [TBL] [Abstract][Full Text] [Related]
35. Surface properties of CNTs and their interaction with silica. Sobolkina A; Mechtcherine V; Bellmann C; Khavrus V; Oswald S; Hampel S; Leonhardt A J Colloid Interface Sci; 2014 Jan; 413():43-53. PubMed ID: 24183429 [TBL] [Abstract][Full Text] [Related]
36. Growth of metal-free carbon nanotubes on glass substrate with an amorphous carbon catalyst layer. Seo JK; Choi WS; Kim HD; Lee JH; Choi EC; Kim HJ; Hong B J Nanosci Nanotechnol; 2011 Dec; 11(12):11032-6. PubMed ID: 22409050 [TBL] [Abstract][Full Text] [Related]
37. Growth of carbon nanostructures using a Pd-based catalyst. Segura RA; Hevia S; Häberle P J Nanosci Nanotechnol; 2011 Nov; 11(11):10036-46. PubMed ID: 22413342 [TBL] [Abstract][Full Text] [Related]
38. Precise control of the number of walls formed during carbon nanotube growth using chemical vapor deposition. Yang HS; Zhang L; Dong XH; Zhu WM; Zhu J; Nelson BJ; Zhang XB Nanotechnology; 2012 Feb; 23(6):065604. PubMed ID: 22248487 [TBL] [Abstract][Full Text] [Related]
39. The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition. Wang H; Ren ZF Nanotechnology; 2011 Oct; 22(40):405601. PubMed ID: 21911923 [TBL] [Abstract][Full Text] [Related]
40. Effect of Crystallinity on the Field Emission Characteristics of Carbon Nanotube Grown on W-Co Bimetallic Catalyst. Yao Q; Wu Y; Song G; Xu Z; Ke Y; Zhan R; Chen J; Zhang Y; Deng S Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786778 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]