These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38030659)
41. Integrating Catalysis of Methane Decomposition and Electrocatalytic Hydrogen Evolution with Ni/CeO Zhang C; Zhang W; Drewett NE; Wang X; Yoo SJ; Wang H; Deng T; Kim JG; Chen H; Huang K; Feng S; Zheng W ChemSusChem; 2019 Mar; 12(5):1000-1010. PubMed ID: 30565883 [TBL] [Abstract][Full Text] [Related]
42. Upgradation of methane in the biogas by hydrogenation of CO Aieamsam-Aung P; Srifa A; Koo-Amornpattana W; Assabumrungrat S; Reubroycharoen P; Suchamalawong P; Fukuhara C; Ratchahat S Sci Rep; 2023 Jun; 13(1):9342. PubMed ID: 37291234 [TBL] [Abstract][Full Text] [Related]
43. Metal-Free H Chen X; Shen Q; Li Z; Wan W; Chen J; Zhang J ACS Appl Mater Interfaces; 2020 Jan; 12(1):654-666. PubMed ID: 31808342 [TBL] [Abstract][Full Text] [Related]
44. Catalytic decomposition of gaseous 1,2-dichlorobenzene over CuOx/TiO₂ and CuOx/TiO₂-CNTs catalysts: Mechanism and PCDD/Fs formation. Wang QL; Huang QX; Wu HF; Lu SY; Wu HL; Li XD; Yan JH Chemosphere; 2016 Feb; 144():2343-50. PubMed ID: 26606189 [TBL] [Abstract][Full Text] [Related]
45. Thin multi-walled carbon nanotubes synthesized by rapid thermal chemical vapor deposition and their field emission properties. Chun KY; Jung SI; Choi HY; Kim JU; Lee CJ J Nanosci Nanotechnol; 2009 Mar; 9(3):2148-54. PubMed ID: 19435094 [TBL] [Abstract][Full Text] [Related]
46. Pre-heating effect on the catalytic growth of partially filled carbon nanotubes by chemical vapor deposition. Sengupta J; Jacob C J Nanosci Nanotechnol; 2010 May; 10(5):3064-71. PubMed ID: 20358900 [TBL] [Abstract][Full Text] [Related]
47. Synthesis of carbon nanotubes by swirled floating catalyst chemical vapour deposition method. Abdulkareem AS; Afolabi AS; Iyuke SE; Vz Pienaar HC J Nanosci Nanotechnol; 2007 Sep; 7(9):3233-8. PubMed ID: 18019155 [TBL] [Abstract][Full Text] [Related]
48. Formation of Thermally Stable, High-Areal-Density, and Small-Diameter Catalyst Nanoparticles via Intermittent Sputtering Deposition for the High-Density Growth of Carbon Nanotubes. Koji H; Kusumoto Y; Hatta A; Furuta H Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159710 [TBL] [Abstract][Full Text] [Related]
49. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition. Chen X; Wang R; Xu J; Yu D Micron; 2004; 35(6):455-60. PubMed ID: 15120130 [TBL] [Abstract][Full Text] [Related]
50. Regulation of Ni-CNT Interaction on Mn-Promoted Nickel Nanocatalysts Supported on Oxygenated CNTs for CO Li J; Zhou Y; Xiao X; Wang W; Wang N; Qian W; Chu W ACS Appl Mater Interfaces; 2018 Dec; 10(48):41224-41236. PubMed ID: 30398829 [TBL] [Abstract][Full Text] [Related]
52. Synthesis and growth mechanism of carbon nanotubes growing on carbon fiber surfaces with improved tensile strength. Qin J; Wang C; Wang Y; Lu R; Zheng L; Wang X; Yao Z; Gao Q; Wei H Nanotechnology; 2018 Sep; 29(39):395602. PubMed ID: 29972379 [TBL] [Abstract][Full Text] [Related]
53. Impacts of Mo Promotion on Nickel-Based Catalysts for the Synthesis of High Quality Carbon Nanotubes Using CO₂ as the Carbon Source. Li S; Sun S; Chu W; Li J; Wang J; Hu J; Jiang C J Nanosci Nanotechnol; 2020 Feb; 20(2):1109-1117. PubMed ID: 31383111 [TBL] [Abstract][Full Text] [Related]
54. Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 2. The CNT-Fe/Co-MgAl2O4 system. Coquay P; Flahaut E; De Grave E; Peigney A; Vandenberghe RE; Laurent C J Phys Chem B; 2005 Sep; 109(38):17825-30. PubMed ID: 16853285 [TBL] [Abstract][Full Text] [Related]
55. Effect of Fe-loading in iron-based catalysts for the CH Yang M; Li S; Deng Y; Baeyens J; Zhang H J Environ Manage; 2023 Nov; 346():118999. PubMed ID: 37751646 [TBL] [Abstract][Full Text] [Related]
56. A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition. Shen Y; Lua AC J Colloid Interface Sci; 2016 Jan; 462():48-55. PubMed ID: 26433477 [TBL] [Abstract][Full Text] [Related]
57. Low Temperature Synthesis of High-Density Carbon Nanotubes on Insulating Substrate. Xiao Y; Ahmed Z; Ma Z; Zhou C; Zhang L; Chan M Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30901961 [TBL] [Abstract][Full Text] [Related]
58. The Synergistic Effect of a Bimetallic Catalyst for the Synthesis of Carbon Nanotube Aerogels and their Predominant Chirality. Moon SY; Kim WS Chemistry; 2019 Oct; 25(59):13635-13639. PubMed ID: 31407390 [TBL] [Abstract][Full Text] [Related]
59. The Use of Diatomite as a Catalyst Carrier for the Synthesis of Carbon Nanotubes. Nazhipkyzy M; Nemkayeva RR; Nurgain A; Seitkazinova AR; Dinistanova BK; Issanbekova AT; Zhylybayeva N; Bergeneva NS; Mamatova GU Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683673 [TBL] [Abstract][Full Text] [Related]
60. Synergistic Effect of a Boron-Doped Carbon-Nanotube-Supported Cu Catalyst for Selective Hydrogenation of Dimethyl Oxalate to Ethanol. Ai P; Tan M; Yamane N; Liu G; Fan R; Yang G; Yoneyama Y; Yang R; Tsubaki N Chemistry; 2017 Jun; 23(34):8252-8261. PubMed ID: 28421629 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]