BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38030970)

  • 1. FastCAR: fast correction for ambient RNA to facilitate differential gene expression analysis in single-cell RNA-sequencing datasets.
    Berg M; Petoukhov I; van den Ende I; Meyer KB; Guryev V; Vonk JM; Carpaij O; Banchero M; Hendriks RW; van den Berge M; Nawijn MC
    BMC Genomics; 2023 Nov; 24(1):722. PubMed ID: 38030970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data.
    Young MD; Behjati S
    Gigascience; 2020 Dec; 9(12):. PubMed ID: 33367645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of background noise and its removal on the analysis of single-cell expression data.
    Janssen P; Kliesmete Z; Vieth B; Adiconis X; Simmons S; Marshall J; McCabe C; Heyn H; Levin JZ; Enard W; Hellmann I
    Genome Biol; 2023 Jun; 24(1):140. PubMed ID: 37337297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DropletQC: improved identification of empty droplets and damaged cells in single-cell RNA-seq data.
    Muskovic W; Powell JE
    Genome Biol; 2021 Dec; 22(1):329. PubMed ID: 34857027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scCDC: a computational method for gene-specific contamination detection and correction in single-cell and single-nucleus RNA-seq data.
    Wang W; Cen Y; Lu Z; Xu Y; Sun T; Xiao Y; Liu W; Li JJ; Wang C
    Genome Biol; 2024 May; 25(1):136. PubMed ID: 38783325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IRIS-EDA: An integrated RNA-Seq interpretation system for gene expression data analysis.
    Monier B; McDermaid A; Wang C; Zhao J; Miller A; Fennell A; Ma Q
    PLoS Comput Biol; 2019 Feb; 15(2):e1006792. PubMed ID: 30763315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. No detectable alloreactive transcriptional responses under standard sample preparation conditions during donor-multiplexed single-cell RNA sequencing of peripheral blood mononuclear cells.
    McGinnis CS; Siegel DA; Xie G; Hartoularos G; Stone M; Ye CJ; Gartner ZJ; Roan NR; Lee SA
    BMC Biol; 2021 Jan; 19(1):10. PubMed ID: 33472616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decontamination of ambient RNA in single-cell RNA-seq with DecontX.
    Yang S; Corbett SE; Koga Y; Wang Z; Johnson WE; Yajima M; Campbell JD
    Genome Biol; 2020 Mar; 21(1):57. PubMed ID: 32138770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.
    Das S; Rai A; Merchant ML; Cave MC; Rai SN
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies.
    Sun Z; Chen L; Xin H; Jiang Y; Huang Q; Cillo AR; Tabib T; Kolls JK; Bruno TC; Lafyatis R; Vignali DAA; Chen K; Ding Y; Hu M; Chen W
    Nat Commun; 2019 Apr; 10(1):1649. PubMed ID: 30967541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation.
    Kubo M; Nishiyama T; Tamada Y; Sano R; Ishikawa M; Murata T; Imai A; Lang D; Demura T; Reski R; Hasebe M
    Nucleic Acids Res; 2019 May; 47(9):4539-4553. PubMed ID: 30873540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender.
    Fleming SJ; Chaffin MD; Arduini A; Akkad AD; Banks E; Marioni JC; Philippakis AA; Ellinor PT; Babadi M
    Nat Methods; 2023 Sep; 20(9):1323-1335. PubMed ID: 37550580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis.
    Wu H; Kirita Y; Donnelly EL; Humphreys BD
    J Am Soc Nephrol; 2019 Jan; 30(1):23-32. PubMed ID: 30510133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-Length Single-Cell RNA-Sequencing with FLASH-seq.
    Hahaut V; Picelli S
    Methods Mol Biol; 2023; 2584():123-164. PubMed ID: 36495447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.
    Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP
    F1000Res; 2018; 7():1306. PubMed ID: 31316748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An interpretable single-cell RNA sequencing data clustering method based on latent Dirichlet allocation.
    Yang Q; Xu Z; Zhou W; Wang P; Jiang Q; Juan L
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37225419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data.
    Chen S; Yan X; Zheng R; Li M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36567258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.