These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 38031465)
1. A wearable system to assist impaired-neck patients: Design and evaluation. Ghasemi A; Sadedel M; Moghaddam MM Proc Inst Mech Eng H; 2024 Jan; 238(1):63-77. PubMed ID: 38031465 [TBL] [Abstract][Full Text] [Related]
2. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke. Rong W; Tong KY; Hu XL; Ho SK Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757 [TBL] [Abstract][Full Text] [Related]
3. A Wearable IMU System for Flexible Teleoperation of a Collaborative Industrial Robot. Škulj G; Vrabič R; Podržaj P Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502761 [TBL] [Abstract][Full Text] [Related]
4. A six degrees-of-freedom cable-driven robotic platform for head-neck movement. Bales I; Zhang H Sci Rep; 2024 Apr; 14(1):8750. PubMed ID: 38627418 [TBL] [Abstract][Full Text] [Related]
5. A Portable Passive Rehabilitation Robot for Upper-Extremity Functional Resistance Training. Washabaugh E; Guo J; Chang CK; Remy D; Krishnan C IEEE Trans Biomed Eng; 2019 Feb; 66(2):496-508. PubMed ID: 29993459 [TBL] [Abstract][Full Text] [Related]
6. Towards an SEMG-based tele-operated robot for masticatory rehabilitation. Kalani H; Moghimi S; Akbarzadeh A Comput Biol Med; 2016 Aug; 75():243-56. PubMed ID: 27322596 [TBL] [Abstract][Full Text] [Related]
7. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study. Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120 [TBL] [Abstract][Full Text] [Related]
8. Wearable neck assistive device strain evaluation study on surface neck muscles for head/neck movements. Lingampally PK; Doss ASA; Kadiyam VR Technol Health Care; 2022; 30(6):1503-1513. PubMed ID: 35723128 [TBL] [Abstract][Full Text] [Related]
9. Research on a New Rehabilitation Robot for Balance Disorders. Wu J; Liu Y; Zhao J; Jia Z IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3927-3936. PubMed ID: 37676800 [TBL] [Abstract][Full Text] [Related]
10. sEMG-Based Gain-Tuned Compliance Control for the Lower Limb Rehabilitation Robot during Passive Training. Tian J; Wang H; Zheng S; Ning Y; Zhang X; Niu J; Vladareanu L Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298256 [TBL] [Abstract][Full Text] [Related]
11. NeuroSuitUp: System Architecture and Validation of a Motor Rehabilitation Wearable Robotics and Serious Game Platform. Mitsopoulos K; Fiska V; Tagaras K; Papias A; Antoniou P; Nizamis K; Kasimis K; Sarra PD; Mylopoulou D; Savvidis T; Praftsiotis A; Arvanitidis A; Lyssas G; Chasapis K; Moraitopoulos A; Astaras A; Bamidis PD; Athanasiou A Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991992 [TBL] [Abstract][Full Text] [Related]
12. Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. Duschau-Wicke A; Caprez A; Riener R J Neuroeng Rehabil; 2010 Sep; 7():43. PubMed ID: 20828422 [TBL] [Abstract][Full Text] [Related]
13. A robotic neck brace to characterize head-neck motion and muscle electromyography in subjects with amyotrophic lateral sclerosis. Zhang H; Chang BC; Andrews J; Mitsumoto H; Agrawal S Ann Clin Transl Neurol; 2019 Sep; 6(9):1671-1680. PubMed ID: 31392848 [TBL] [Abstract][Full Text] [Related]
14. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory. Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528 [TBL] [Abstract][Full Text] [Related]
15. A Novel Wearable Soft Glove for Hand Rehabilitation and Assistive Grasping. Zhu Y; Gong W; Chu K; Wang X; Hu Z; Su H Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016055 [TBL] [Abstract][Full Text] [Related]
16. Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects. Khor KX; Chin PJH; Yeong CF; Su ELM; Narayanan ALT; Abdul Rahman H; Khan QI IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1864-1873. PubMed ID: 28410110 [TBL] [Abstract][Full Text] [Related]
17. A Generative Model to Embed Human Expressivity into Robot Motions. Osorio P; Sagawa R; Abe N; Venture G Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257661 [TBL] [Abstract][Full Text] [Related]
18. Gait training with a wearable powered robot during stroke rehabilitation: a randomized parallel-group trial. Miyagawa D; Matsushima A; Maruyama Y; Mizukami N; Tetsuya M; Hashimoto M; Yoshida K J Neuroeng Rehabil; 2023 Apr; 20(1):54. PubMed ID: 37118743 [TBL] [Abstract][Full Text] [Related]
19. Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke. Hu XL; Tong RK; Ho NS; Xue JJ; Rong W; Li LS Neurorehabil Neural Repair; 2015 Sep; 29(8):767-76. PubMed ID: 25549656 [TBL] [Abstract][Full Text] [Related]
20. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation. Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]