These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 38031466)
1. Glioma Tumor Grading Using Radiomics on Conventional MRI: A Comparative Study of WHO 2021 and WHO 2016 Classification of Central Nervous Tumors. Moodi F; Khodadadi Shoushtari F; Ghadimi DJ; Valizadeh G; Khormali E; Salari HM; Ohadi MAD; Nilipour Y; Jahanbakhshi A; Rad HS J Magn Reson Imaging; 2024 Sep; 60(3):923-938. PubMed ID: 38031466 [TBL] [Abstract][Full Text] [Related]
2. Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors. Park YW; Choi YS; Ahn SS; Chang JH; Kim SH; Lee SK Korean J Radiol; 2019 Sep; 20(9):1381-1389. PubMed ID: 31464116 [TBL] [Abstract][Full Text] [Related]
3. Radiomics strategy for glioma grading using texture features from multiparametric MRI. Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085 [TBL] [Abstract][Full Text] [Related]
4. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414 [TBL] [Abstract][Full Text] [Related]
5. Glioma grading using a machine-learning framework based on optimized features obtained from T Sengupta A; Ramaniharan AK; Gupta RK; Agarwal S; Singh A J Magn Reson Imaging; 2019 Oct; 50(4):1295-1306. PubMed ID: 30895704 [TBL] [Abstract][Full Text] [Related]
7. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging. Hashido T; Saito S; Ishida T J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479 [TBL] [Abstract][Full Text] [Related]
8. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features. Zhang X; Yan LF; Hu YC; Li G; Yang Y; Han Y; Sun YZ; Liu ZC; Tian Q; Han ZY; Liu LD; Hu BQ; Qiu ZY; Wang W; Cui GB Oncotarget; 2017 Jul; 8(29):47816-47830. PubMed ID: 28599282 [TBL] [Abstract][Full Text] [Related]
9. Optimizing Texture Retrieving Model for Multimodal MR Image-Based Support Vector Machine for Classifying Glioma. Yang Y; Yan LF; Zhang X; Nan HY; Hu YC; Han Y; Zhang J; Liu ZC; Sun YZ; Tian Q; Yu Y; Sun Q; Wang SY; Zhang X; Wang W; Cui GB J Magn Reson Imaging; 2019 May; 49(5):1263-1274. PubMed ID: 30623514 [TBL] [Abstract][Full Text] [Related]
10. Predicting histological grade in pediatric glioma using multiparametric radiomics and conventional MRI features. Zhou T; Qiao B; Peng B; Liu Y; Gong Z; Kang M; He Y; Pang C; Dai Y; Sheng M Sci Rep; 2024 Jun; 14(1):13683. PubMed ID: 38871755 [TBL] [Abstract][Full Text] [Related]
11. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas. Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703 [TBL] [Abstract][Full Text] [Related]
12. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431 [TBL] [Abstract][Full Text] [Related]
13. -New frontiers in domain-inspired radiomics and radiogenomics: increasing role of molecular diagnostics in CNS tumor classification and grading following WHO CNS-5 updates. Singh G; Singh A; Bae J; Manjila S; Spektor V; Prasanna P; Lignelli A Cancer Imaging; 2024 Oct; 24(1):133. PubMed ID: 39375809 [TBL] [Abstract][Full Text] [Related]
14. Radiomics Strategy for Molecular Subtype Stratification of Lower-Grade Glioma: Detecting IDH and TP53 Mutations Based on Multimodal MRI. Zhang X; Tian Q; Wang L; Liu Y; Li B; Liang Z; Gao P; Zheng K; Zhao B; Lu H J Magn Reson Imaging; 2018 Oct; 48(4):916-926. PubMed ID: 29394005 [TBL] [Abstract][Full Text] [Related]
15. Amide proton transfer-weighted imagingĀ and derived radiomics in the classification of adult-type diffuse gliomas. Wu M; Jiang T; Guo M; Duan Y; Zhuo Z; Weng J; Xie C; Sun J; Li J; Cheng D; Liu X; Du J; Zhang X; Zhang Y; Liu Y Eur Radiol; 2024 May; 34(5):2986-2996. PubMed ID: 37855851 [TBL] [Abstract][Full Text] [Related]
16. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging. Lin K; Cidan W; Qi Y; Wang X Med Phys; 2022 Jul; 49(7):4419-4429. PubMed ID: 35366379 [TBL] [Abstract][Full Text] [Related]
17. Improving Noninvasive Classification of Molecular Subtypes of Adult Gliomas With Diffusion-Weighted MR Imaging: An Externally Validated Machine Learning Algorithm. Guo Y; Ma Z; Pei D; Duan W; Guo Y; Liu Z; Guan F; Wang Z; Xing A; Guo Z; Luo L; Wang W; Yu B; Zhou J; Ji Y; Yan D; Cheng J; Liu X; Yan J; Zhang Z J Magn Reson Imaging; 2023 Oct; 58(4):1234-1242. PubMed ID: 36727433 [TBL] [Abstract][Full Text] [Related]
18. Radiomics Nomogram Building From Multiparametric MRI to Predict Grade in Patients With Glioma: A Cohort Study. Wang Q; Li Q; Mi R; Ye H; Zhang H; Chen B; Li Y; Huang G; Xia J J Magn Reson Imaging; 2019 Mar; 49(3):825-833. PubMed ID: 30260592 [TBL] [Abstract][Full Text] [Related]
19. MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting. Sakai Y; Yang C; Kihira S; Tsankova N; Khan F; Hormigo A; Lai A; Cloughesy T; Nael K Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121211 [TBL] [Abstract][Full Text] [Related]
20. Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis. Nakamoto T; Takahashi W; Haga A; Takahashi S; Kiryu S; Nawa K; Ohta T; Ozaki S; Nozawa Y; Tanaka S; Mukasa A; Nakagawa K Sci Rep; 2019 Dec; 9(1):19411. PubMed ID: 31857632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]