These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38031510)

  • 1. Alternative treatment of olive mill wastewater by combined sulfate radical-based advanced electrocoagulation processes.
    Yazici Guvenc S; Tunc S
    Water Environ Res; 2023 Dec; 95(12):e10951. PubMed ID: 38031510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative sequential combinations of electrocoagulation with electrooxidation and peroxi-coagulation for effective treatment of adhesive production industry wastewater.
    Boyraz B; Unal Yilmaz E; Yazici Guvenc S; Can-Güven E; Varank G; Demir A
    J Environ Manage; 2024 Sep; 367():122067. PubMed ID: 39111011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes.
    Esfandyari Y; Mahdavi Y; Seyedsalehi M; Hoseini M; Safari GH; Ghozikali MG; Kamani H; Jaafari J
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6288-97. PubMed ID: 25408073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical oxygen demand and tannin/lignin removal from paper mill wastewater by electrocoagulation combined with peroxide and hypochlorite treatments.
    Caglak A; Sari-Erkan H; Onkal Engin G
    Environ Technol; 2024 Jun; 45(15):3076-3094. PubMed ID: 37105959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined process of electrocoagulation and photocatalytic degradation for the treatment of olive washing wastewater.
    Ates H; Dizge N; Yatmaz HC
    Water Sci Technol; 2017 Jan; 75(1-2):141-154. PubMed ID: 28067654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing COD removal from greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical energy consumption.
    Ahmadi M; Ghanbari F
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19350-61. PubMed ID: 27370537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced treatment of dye manufacturing wastewater by electrocoagulation and electro-Fenton processes: Effect on COD fractions, energy consumption, and sludge analysis.
    Can-Güven E
    J Environ Manage; 2021 Dec; 300():113784. PubMed ID: 34649310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of olive processing wastewater by electrocoagulation: An effectiveness and economic assessment.
    Niazmand R; Jahani M; Kalantarian S
    J Environ Manage; 2019 Oct; 248():109262. PubMed ID: 31330271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of pre-treatment methods on membrane flux, COD, and total phenol removal efficiencies for membrane treatment of pistachio wastewater.
    Ozay Y; Dizge N
    J Environ Manage; 2022 May; 310():114762. PubMed ID: 35220102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous hydrogen production and pollutant removal from olive mill wastewaters using electrohydrolysis process.
    Ayman Oz N; Cagla Uzun Eker A
    Chemosphere; 2019 Oct; 232():296-303. PubMed ID: 31154191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of hybrid treatment of olive mill wastewaters through impregnation onto raw cypress sawdust and electrocoagulation.
    Bargaoui M; Jellali S; Azzaz AA; Jeguirim M; Akrout H
    Environ Sci Pollut Res Int; 2021 May; 28(19):24470-24485. PubMed ID: 32337671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient integration of electrocoagulation treatment with the spray-pyrolyzed activated carbon coating on stainless steel electrodes for textile effluent-bath reuse with ease.
    Gowthaman S; Selvaraju T
    Water Environ Res; 2023 Oct; 95(10):e10938. PubMed ID: 37815304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of vegetable oil wastewater by a conventional activated sludge process coupled with electrocoagulation process.
    Akarsu C; Bilici Z; Dizge N
    Water Environ Res; 2022 Feb; 94(2):e10692. PubMed ID: 35187750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wastewater treatment from the biodiesel production using waste cooking oil by electrocoagulation: a multivariate approach.
    Sari-Erkan H
    Water Sci Technol; 2019 Jun; 79(12):2366-2377. PubMed ID: 31411591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and detoxification of petroleum refinery wastewater by electrocoagulation process.
    Gousmi N; Sahmi A; Li HZ; Poncin S; Djebbar R; Bensadok K
    Environ Technol; 2016 Sep; 37(18):2348-57. PubMed ID: 26853634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of olive mill wastewater by chemical processes: effect of acid cracking pretreatment.
    Hande Gursoy-Haksevenler B; Arslan-Alaton I
    Water Sci Technol; 2014; 69(7):1453-61. PubMed ID: 24718336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of hybrid electrocoagulation and electrooxidation process for treatment of wastewater from the cotton textile industry.
    Asfaha YG; Zewge F; Yohannes T; Kebede S
    Chemosphere; 2022 Sep; 302():134706. PubMed ID: 35523291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of paper mill industry wastewater treatment by electrocoagulation and electro-Fenton processes using response surface methodology.
    Guvenc SY; Erkan HS; Varank G; Bilgili MS; Engin GO
    Water Sci Technol; 2017 Oct; 76(7-8):2015-2031. PubMed ID: 29068332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of energy costs in the pretreatment of olive mill wastewaters by electrocoagulation.
    Coskun T; Ilhan F; Demir NM; Debik E; Kurt U
    Environ Technol; 2012; 33(7-9):801-7. PubMed ID: 22720403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical treatment and operating cost analysis of textile wastewater using sacrificial iron electrodes.
    Kobya M; Demirbas E; Akyol A
    Water Sci Technol; 2009; 60(9):2261-70. PubMed ID: 19901457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.