These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38031587)

  • 1. Data-driven Modeling of the Mechanical Behavior of Anisotropic Soft Biological Tissue.
    Tac V; Sree VD; Rausch MK; Tepole AB
    Eng Comput; 2022 Oct; 38(5):4167-4182. PubMed ID: 38031587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-driven Tissue Mechanics with Polyconvex Neural Ordinary Differential Equations.
    Tac V; Sahli Costabal F; Tepole AB
    Comput Methods Appl Mech Eng; 2022 Aug; 398():. PubMed ID: 38045634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic damage model for collagenous tissues and its application to model fracture and needle insertion mechanics.
    Toaquiza Tubon JD; Moreno-Flores O; Sree VD; Tepole AB
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1-16. PubMed ID: 36057750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-driven anisotropic finite viscoelasticity using neural ordinary differential equations.
    Taç V; Rausch M; Costabal FS; Tepole AB
    Comput Methods Appl Mech Eng; 2023 Jun; 411():. PubMed ID: 37426992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking physics-informed frameworks for data-driven hyperelasticity.
    Taç V; Linka K; Sahli-Costabal F; Kuhl E; Tepole AB
    Comput Mech; 2024 Jan; 73(1):49-65. PubMed ID: 38741577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic generation of user material subroutines for biomechanical growth analysis.
    Young JM; Yao J; Ramasubramanian A; Taber LA; Perucchio R
    J Biomech Eng; 2010 Oct; 132(10):104505. PubMed ID: 20887023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanics of pulmonary airways: Linking structure to function through constitutive modeling, biochemistry, and histology.
    Eskandari M; Nordgren TM; O'Connell GD
    Acta Biomater; 2019 Oct; 97():513-523. PubMed ID: 31330329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-driven continuum damage mechanics with built-in physics.
    Tac V; Kuhl E; Tepole AB
    Extreme Mech Lett; 2024 Sep; 71():. PubMed ID: 39372561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning modeling of lung mechanics: Assessing the variability and propagation of uncertainty in respiratory-system compliance and airway resistance.
    Barahona J; Sahli Costabal F; Hurtado DE
    Comput Methods Programs Biomed; 2024 Jan; 243():107888. PubMed ID: 37948910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated model discovery for human brain using Constitutive Artificial Neural Networks.
    Linka K; St Pierre SR; Kuhl E
    Acta Biomater; 2023 Apr; 160():134-151. PubMed ID: 36736643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the deformation gradient in Abaqus and key guidelines for anisotropic hyperelastic user material subroutines (UMATs).
    Nolan DR; Lally C; McGarry JP
    J Mech Behav Biomed Mater; 2022 Feb; 126():104940. PubMed ID: 34923365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-fidelity surrogate modeling through hybrid machine learning for biomechanical and finite element analysis of soft tissues.
    Sajjadinia SS; Carpentieri B; Shriram D; Holzapfel GA
    Comput Biol Med; 2022 Sep; 148():105699. PubMed ID: 35715259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.
    Huang H; Tang W; Yan B; Wu B; Cao D
    Comput Methods Biomech Biomed Engin; 2016; 19(2):188-98. PubMed ID: 25648914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Nonlinear and Anisotropic Mechanics of Metal Rubber Using a Combination of Constitutive Modeling, Machine Learning, and Finite Element Analysis.
    Zhao Y; Yan H; Wang Y; Jiang T; Jiang H
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation.
    Fan R; Sacks MS
    J Biomech; 2014 Jun; 47(9):2043-54. PubMed ID: 24746842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An anisotropic elastic-viscoplastic damage model for bone tissue.
    Schwiedrzik JJ; Zysset PK
    Biomech Model Mechanobiol; 2013 Apr; 12(2):201-13. PubMed ID: 22527365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to implement user-defined fiber-reinforced hyperelastic materials in finite element software.
    Fehervary H; Maes L; Vastmans J; Kloosterman G; Famaey N
    J Mech Behav Biomed Mater; 2020 Oct; 110():103737. PubMed ID: 32771879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A continuum model and simulations for large deformation of anisotropic fiber-matrix composites for cardiac tissue engineering.
    Bai Y; Kaiser NJ; Coulombe KLK; Srivastava V
    J Mech Behav Biomed Mater; 2021 Sep; 121():104627. PubMed ID: 34130078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation data and FORTRAN code to compare the stress response of two transversely isotropic hyperelastic models in ABAQUS.
    Castillo-Méndez C; Ortiz A
    Data Brief; 2022 Apr; 41():107853. PubMed ID: 35128007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.