These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Anisotropic damage model for collagenous tissues and its application to model fracture and needle insertion mechanics. Toaquiza Tubon JD; Moreno-Flores O; Sree VD; Tepole AB Biomech Model Mechanobiol; 2022 Dec; 21(6):1-16. PubMed ID: 36057750 [TBL] [Abstract][Full Text] [Related]
5. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Sun W; Sacks MS Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264 [TBL] [Abstract][Full Text] [Related]
6. Benchmarking physics-informed frameworks for data-driven hyperelasticity. Taç V; Linka K; Sahli-Costabal F; Kuhl E; Tepole AB Comput Mech; 2024 Jan; 73(1):49-65. PubMed ID: 38741577 [TBL] [Abstract][Full Text] [Related]
7. Automatic generation of user material subroutines for biomechanical growth analysis. Young JM; Yao J; Ramasubramanian A; Taber LA; Perucchio R J Biomech Eng; 2010 Oct; 132(10):104505. PubMed ID: 20887023 [TBL] [Abstract][Full Text] [Related]
8. Mechanics of pulmonary airways: Linking structure to function through constitutive modeling, biochemistry, and histology. Eskandari M; Nordgren TM; O'Connell GD Acta Biomater; 2019 Oct; 97():513-523. PubMed ID: 31330329 [TBL] [Abstract][Full Text] [Related]
10. Machine learning modeling of lung mechanics: Assessing the variability and propagation of uncertainty in respiratory-system compliance and airway resistance. Barahona J; Sahli Costabal F; Hurtado DE Comput Methods Programs Biomed; 2024 Jan; 243():107888. PubMed ID: 37948910 [TBL] [Abstract][Full Text] [Related]
11. Automated model discovery for human brain using Constitutive Artificial Neural Networks. Linka K; St Pierre SR; Kuhl E Acta Biomater; 2023 Apr; 160():134-151. PubMed ID: 36736643 [TBL] [Abstract][Full Text] [Related]
12. Understanding the deformation gradient in Abaqus and key guidelines for anisotropic hyperelastic user material subroutines (UMATs). Nolan DR; Lally C; McGarry JP J Mech Behav Biomed Mater; 2022 Feb; 126():104940. PubMed ID: 34923365 [TBL] [Abstract][Full Text] [Related]
13. Multi-fidelity surrogate modeling through hybrid machine learning for biomechanical and finite element analysis of soft tissues. Sajjadinia SS; Carpentieri B; Shriram D; Holzapfel GA Comput Biol Med; 2022 Sep; 148():105699. PubMed ID: 35715259 [TBL] [Abstract][Full Text] [Related]
14. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method. Huang H; Tang W; Yan B; Wu B; Cao D Comput Methods Biomech Biomed Engin; 2016; 19(2):188-98. PubMed ID: 25648914 [TBL] [Abstract][Full Text] [Related]
15. Predicting Nonlinear and Anisotropic Mechanics of Metal Rubber Using a Combination of Constitutive Modeling, Machine Learning, and Finite Element Analysis. Zhao Y; Yan H; Wang Y; Jiang T; Jiang H Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576424 [TBL] [Abstract][Full Text] [Related]
16. Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation. Fan R; Sacks MS J Biomech; 2014 Jun; 47(9):2043-54. PubMed ID: 24746842 [TBL] [Abstract][Full Text] [Related]
17. An anisotropic elastic-viscoplastic damage model for bone tissue. Schwiedrzik JJ; Zysset PK Biomech Model Mechanobiol; 2013 Apr; 12(2):201-13. PubMed ID: 22527365 [TBL] [Abstract][Full Text] [Related]
18. How to implement user-defined fiber-reinforced hyperelastic materials in finite element software. Fehervary H; Maes L; Vastmans J; Kloosterman G; Famaey N J Mech Behav Biomed Mater; 2020 Oct; 110():103737. PubMed ID: 32771879 [TBL] [Abstract][Full Text] [Related]
19. A continuum model and simulations for large deformation of anisotropic fiber-matrix composites for cardiac tissue engineering. Bai Y; Kaiser NJ; Coulombe KLK; Srivastava V J Mech Behav Biomed Mater; 2021 Sep; 121():104627. PubMed ID: 34130078 [TBL] [Abstract][Full Text] [Related]
20. Numerical simulation data and FORTRAN code to compare the stress response of two transversely isotropic hyperelastic models in ABAQUS. Castillo-Méndez C; Ortiz A Data Brief; 2022 Apr; 41():107853. PubMed ID: 35128007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]