These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38032012)

  • 1. Interplay between dynamic heterogeneity and interfacial gradients in a model polymer film.
    Hartley AD; Drayer WF; Ghanekarade A; Simmons DS
    J Chem Phys; 2023 Nov; 159(20):. PubMed ID: 38032012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glass formation and dynamics of model polymer films with one
    Ghanekarade A; Simmons DS
    Soft Matter; 2023 Nov; 19(43):8413-8422. PubMed ID: 37877245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature of dynamic gradients, glass formation, and collective effects in ultrathin freestanding films.
    Ghanekarade A; Phan AD; Schweizer KS; Simmons DS
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34326262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the broadening and the existence of two glass transitions due to competing interfacial effects in thin, supported polymer films.
    Glor EC; Angrand GV; Fakhraai Z
    J Chem Phys; 2017 May; 146(20):203330. PubMed ID: 28571332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of substrate interactions on the glass transition and length-scale of correlated dynamics in ultra-thin molecular glass films.
    Zhang Y; Woods CN; Alvarez M; Jin Y; Riggleman RA; Fakhraai Z
    J Chem Phys; 2018 Nov; 149(18):184902. PubMed ID: 30441931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical heterogeneity in a vapor-deposited polymer glass.
    Zhang W; Douglas JF; Starr FW
    J Chem Phys; 2017 May; 146(20):203310. PubMed ID: 28571350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of chemistry, interfacial width, and non-isothermal conditions on spatially heterogeneous activated relaxation and elasticity in glass-forming free standing films.
    Mirigian S; Schweizer KS
    J Chem Phys; 2017 May; 146(20):203301. PubMed ID: 28571330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of the spatial transfer of interface-nucleated changes of dynamical constraints and its consequences in glass-forming films.
    Phan AD; Schweizer KS
    J Chem Phys; 2019 Jan; 150(4):044508. PubMed ID: 30709240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially Distributed Rheological Properties in Confined Polymers by Noncontact Shear.
    Chowdhury M; Guo Y; Wang Y; Merling WL; Mangalara JH; Simmons DS; Priestley RD
    J Phys Chem Lett; 2017 Mar; 8(6):1229-1234. PubMed ID: 28256842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of the structural relaxation time in equilibrium below the nominal T(g): results from freestanding polymer films.
    Ngai KL; Capaccioli S; Paluch M; Prevosto D
    J Phys Chem B; 2014 May; 118(20):5608-14. PubMed ID: 24798795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconciling computational and experimental trends in the temperature dependence of the interfacial mobility of polymer films.
    Zhang W; Starr FW; Douglas JF
    J Chem Phys; 2020 Mar; 152(12):124703. PubMed ID: 32241151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitation of interfacial dynamics in entangled polymer films.
    Glor EC; Fakhraai Z
    J Chem Phys; 2014 Nov; 141(19):194505. PubMed ID: 25416896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of concentrated polymer solutions in thin film geometry. I. Equilibrium properties near the glass transition.
    Peter S; Meyer H; Baschnagel J
    J Chem Phys; 2009 Jul; 131(1):014902. PubMed ID: 19586119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic phase transitions in freestanding polymer thin films.
    Ivancic RJS; Riggleman RA
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25407-25413. PubMed ID: 33008880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Looking at the dynamical heterogeneity in a supercooled polymer system through isoconfigurational ensemble.
    Balbuena C; Gianetti MM; Soulé ER
    J Chem Phys; 2018 Sep; 149(9):094506. PubMed ID: 30195298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of Spatial Gradients of Relaxation, Vitrification Temperature and Fragility of Glass-Forming Polymer Liquids Near Solid Substrates.
    Phan AD; Schweizer KS
    ACS Macro Lett; 2020 Apr; 9(4):448-453. PubMed ID: 35648500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does fragility of glass formation determine the strength of T
    Mangalara JH; Marvin MD; Wiener NR; Mackura ME; Simmons DS
    J Chem Phys; 2017 Mar; 146(10):104902. PubMed ID: 28298103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The microscopic origins of stretched exponential relaxation in two model glass-forming liquids as probed by simulations in the isoconfigurational ensemble.
    Diaz Vela D; Simmons DS
    J Chem Phys; 2020 Dec; 153(23):234503. PubMed ID: 33353315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Communication: Slow relaxation, spatial mobility gradients, and vitrification in confined films.
    Mirigian S; Schweizer KS
    J Chem Phys; 2014 Oct; 141(16):161103. PubMed ID: 25362264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical aging, the local dynamics of glass-forming polymers under nanoscale confinement.
    Shavit A; Riggleman RA
    J Phys Chem B; 2014 Jul; 118(30):9096-103. PubMed ID: 25046680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.