These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38032353)

  • 1. Copper Phosphinate Complexes as Molecular Precursors for Ethanol Dehydrogenation Catalysts.
    Pokorny T; Doroshenko I; Machac P; Simonikova L; Bittova M; Moravec Z; Karaskova K; Skoda D; Pinkas J; Styskalik A
    Inorg Chem; 2023 Dec; 62(49):19871-19886. PubMed ID: 38032353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol Dehydrogenation over Copper-Silica Catalysts: From Sub-Nanometer Clusters to 15 nm Large Particles.
    Pokorny T; Vykoukal V; Machac P; Moravec Z; Scotti N; Roupcova P; Karaskova K; Styskalik A
    ACS Sustain Chem Eng; 2023 Jul; 11(30):10980-10992. PubMed ID: 37538293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Calcination Temperature on Mg-Al Layered Double Hydroxides (LDH) as Promising Catalysts in Oxidative Dehydrogenation of Ethanol to Acetaldehyde.
    Pinthong P; Praserthdam P; Jongsomjit B
    J Oleo Sci; 2019 Jan; 68(1):95-102. PubMed ID: 30542011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the Preparation of Copper Catalysts Supported on Layered Double Hydroxide Derived Mixed Oxides for Ethanol Dehydrogenation.
    Santos RMM; Briois V; Martins L; Santilli CV
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26001-26012. PubMed ID: 34043905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.
    Haibach MC; Kundu S; Brookhart M; Goldman AS
    Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative Dehydrogenation of Ethanol over Vanadium- and Molybdenum-modified Mg-Al Mixed Oxide Derived from Hydrotalcite.
    Pinthong P; Praserthdam P; Jongsomjit B
    J Oleo Sci; 2019 Jul; 68(7):679-687. PubMed ID: 31178468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethanol to Acetaldehyde Conversion under Thermal and Microwave Heating of ZnO-CuO-SiO
    Kustov AL; Tarasov AL; Tkachenko OP; Mishin IV; Kapustin GI; Kustov LM
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33807124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of Ethanol Transformation on Copper-Containing SBA-15 and MnSBA-15 Catalysts by the Presence of Oxygen in the Reaction Mixture.
    Sobczak I; Wisniewska J; Decyk P; Trejda M; Ziolek M
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of Acetaldehyde via Oxidative Dehydrogenation of Ethanol in a Chemical Looping Setup.
    Gebers JC; Abu Kasim AFB; Fulham GJ; Kwong KY; Marek EJ
    ACS Eng Au; 2023 Jun; 3(3):184-194. PubMed ID: 37362007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic evidence for origins of size and support effects on selectivity of Cu nanoparticle dehydrogenation catalysts.
    Witzke ME; Dietrich PJ; Ibrahim MY; Al-Bardan K; Triezenberg MD; Flaherty DW
    Chem Commun (Camb); 2017 Jan; 53(3):597-600. PubMed ID: 27981330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Selective and Stable Cu Catalysts Based on Ni-Al Catalytic Systems for Bioethanol Upgrading to n-Butanol.
    Xiao Y; Zhan N; Li J; Tan Y; Ding Y
    Molecules; 2023 Jul; 28(15):. PubMed ID: 37570654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic Effect of a Boron-Doped Carbon-Nanotube-Supported Cu Catalyst for Selective Hydrogenation of Dimethyl Oxalate to Ethanol.
    Ai P; Tan M; Yamane N; Liu G; Fan R; Yang G; Yoneyama Y; Yang R; Tsubaki N
    Chemistry; 2017 Jun; 23(34):8252-8261. PubMed ID: 28421629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propane dehydrogenation over Pt-Cu bimetallic catalysts: the nature of coke deposition and the role of copper.
    Han Z; Li S; Jiang F; Wang T; Ma X; Gong J
    Nanoscale; 2014 Sep; 6(17):10000-8. PubMed ID: 24933477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A ZrO
    Wang Y; Zhao Z; Zhao Y; Lan X; Xu W; Chen L; Guo D; Duan Z
    RSC Adv; 2019 Sep; 9(52):30439-30447. PubMed ID: 35530217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-temperature catalytic reforming of n-hexane over supported and core-shell Pt nanoparticle catalysts: role of oxide-metal interface and thermal stability.
    An K; Zhang Q; Alayoglu S; Musselwhite N; Shin JY; Somorjai GA
    Nano Lett; 2014 Aug; 14(8):4907-12. PubMed ID: 25078630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of deactivation in mesocellular foam carbon (MCF-C) catalyst used in gas-phase dehydrogenation of ethanol.
    Klinthongchai Y; Prichanont S; Praserthdam P; Jongsomjit B
    Sci Rep; 2021 Jun; 11(1):11683. PubMed ID: 34083667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Highly Stable Copper-Based Catalyst for Clarifying the Catalytic Roles of Cu
    Yang H; Chen Y; Cui X; Wang G; Cen Y; Deng T; Yan W; Gao J; Zhu S; Olsbye U; Wang J; Fan W
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1836-1840. PubMed ID: 29314496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol.
    Yue H; Ma X; Gong J
    Acc Chem Res; 2014 May; 47(5):1483-92. PubMed ID: 24571103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ni-Based Hydrotalcite (HT)-Derived Cu Catalysts for Catalytic Conversion of Bioethanol to Butanol.
    Xiao Y; Li J; Tan Y; Chen X; Bai F; Luo W; Ding Y
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.