These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38032546)

  • 61. Capacity-enhanced and kinetic-expedited zinc-ion storage ability in a Zn
    Yang L; Jian J; Wang S; Wang S; Abliz A; Zhao F; Li H; Wu J; Wang Y
    Dalton Trans; 2022 Oct; 51(40):15436-15445. PubMed ID: 36156619
    [TBL] [Abstract][Full Text] [Related]  

  • 62. High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials.
    Pu X; Jiang B; Wang X; Liu W; Dong L; Kang F; Xu C
    Nanomicro Lett; 2020 Jul; 12(1):152. PubMed ID: 34138177
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries.
    Zhai XZ; Qu J; Hao SM; Jing YQ; Chang W; Wang J; Li W; Abdelkrim Y; Yuan H; Yu ZZ
    Nanomicro Lett; 2020 Feb; 12(1):56. PubMed ID: 34138296
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Low-Cost Zinc-Alginate-Based Hydrogel-Polymer Electrolytes for Dendrite-Free Zinc-Ion Batteries with High Performances and Prolonged Lifetimes.
    Zheng Z; Cao H; Shi W; She C; Zhou X; Liu L; Zhu Y
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616562
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ion Diffusion-Directed Assembly of an Artificial Electronic-Ionic Conductor Layer with Zn-Ion Selective Channels for Highly Reversible Zinc Anodes.
    Liu L; Cheng J; Wang X; Zhang J; Wang B
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31867-31879. PubMed ID: 37343222
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Interface engineering of heterostructured vanadium oxides for enhanced energy storage in Zinc-Ion batteries.
    Wu TH; Chen JA; Su JH
    J Colloid Interface Sci; 2024 Jan; 654(Pt A):308-316. PubMed ID: 37844502
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ta
    Liu W; Zong H; Li M; Zeng Z; Gong S; Yu K; Zhu Z
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13554-13564. PubMed ID: 36876348
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A dual conducting network corbelled hydrated vanadium pentoxide cathode for high-rate aqueous zinc-ion batteries.
    Xu YT; Chen MJ; Wang HR; Zhou CJ; Ma Q; Deng Q; Wu XW; Zeng XX
    Nanoscale; 2022 Jan; 14(3):1008-1013. PubMed ID: 34989750
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Critical triple roles of sodium iodide in tailoring the solventized structure, anode-electrolyte interface and crystal plane growth to achieve highly reversible zinc anodes for aqueous zinc-ion batteries.
    Huang X; Li Q; Zhang X; Cao H; Zhao J; Liu Y; Zheng Q; Huo Y; Xie F; Xu B; Lin D
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):875-882. PubMed ID: 37450976
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Copper-doped layered Fe
    Li J; Shao W; Zhang D; Wang Q
    J Colloid Interface Sci; 2023 Dec; 652(Pt A):500-507. PubMed ID: 37604061
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fabrication of an Inexpensive Hydrophilic Bridge on a Carbon Substrate and Loading Vanadium Sulfides for Flexible Aqueous Zinc-Ion Batteries.
    Liu S; Chen X; Zhang Q; Zhou J; Cai Z; Pan A
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36676-36684. PubMed ID: 31538766
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Controllable CF
    Li M; Zhou X; He X; Lai C; Shan B; Wang K; Jiang K
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3017-3027. PubMed ID: 36598433
    [TBL] [Abstract][Full Text] [Related]  

  • 73. 3D zinc@carbon fiber composite framework anode for aqueous Zn-MnO
    Dong W; Shi JL; Wang TS; Yin YX; Wang CR; Guo YG
    RSC Adv; 2018 May; 8(34):19157-19163. PubMed ID: 35539665
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A high-performance free-standing Zn anode for flexible zinc-ion batteries.
    Gao C; Wang J; Huang Y; Li Z; Zhang J; Kuang H; Chen S; Nie Z; Huang S; Li W; Li Y; Jin S; Pan Y; Long T; Luo J; Zhou H; Wang X
    Nanoscale; 2021 Jun; 13(22):10100-10107. PubMed ID: 34057167
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Self-Healing Lamellar Structure Boosts Highly Stable Zinc-Storage Property of Bilayered Vanadium Oxides.
    Yang G; Wei T; Wang C
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35079-35089. PubMed ID: 30247019
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Vanadium Pentoxide Nanofibers/Carbon Nanotubes Hybrid Film for High-Performance Aqueous Zinc-Ion Batteries.
    Liu X; Ma L; Du Y; Lu Q; Yang A; Wang X
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33924150
    [TBL] [Abstract][Full Text] [Related]  

  • 77. On-site building of a Zn
    Xiao P; Xue L; Guo Y; Hu L; Cui C; Li H; Zhai T
    Sci Bull (Beijing); 2021 Mar; 66(6):545-552. PubMed ID: 36654424
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In Situ Electrochemical Transformation Reaction of Ammonium-Anchored Heptavanadate Cathode for Long-Life Aqueous Zinc-Ion Batteries.
    Dong W; Du M; Zhang F; Zhang X; Miao Z; Li H; Sang Y; Wang JJ; Liu H; Wang S
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5034-5043. PubMed ID: 33464805
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Driving the Interfacial Ion-Transfer Kinetics by Mesoporous TiO
    Zhou X; Cao P; Wei A; Zou A; Ye H; Liu W; Tang J; Yang J
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8181-8190. PubMed ID: 33560817
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sieve-Like interface built by ZnO porous sheets towards stable zinc anodes.
    Zhou Y; Xie S; Li Y; Zheng Z; Dong L
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):676-684. PubMed ID: 36347094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.