These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38032866)

  • 1. Cooperative Bifurcated Chalcogen Bonding and Hydrogen Bonding as Stereocontrolling Elements for Selective Strain-Release Septanosylation.
    Ma W; Kirchhoff JL; Strohmann C; Grabe B; Loh CCJ
    J Am Chem Soc; 2023 Dec; 145(49):26611-26622. PubMed ID: 38032866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereoselective Entry into α,α'-C-Oxepane Scaffolds through a Chalcogen Bonding Catalyzed Strain-Release C-Septanosylation Strategy.
    Ma W; Schmidt A; Strohmann C; Loh CCJ
    Angew Chem Int Ed Engl; 2024 Jul; 63(29):e202405706. PubMed ID: 38687567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harnessing Multistep Chalcogen Bonding Activation in the α-Stereoselective Synthesis of Iminoglycosides.
    Wang C; Krupp A; Strohmann C; Grabe B; Loh CCJ
    J Am Chem Soc; 2024 Apr; 146(15):10608-10620. PubMed ID: 38564319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric Pd/Organoboron-Catalyzed Site-Selective Carbohydrate Functionalization with Alkoxyallenes Involving Noncovalent Stereocontrol.
    Guo H; Kirchhoff JL; Strohmann C; Grabe B; Loh CCJ
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202400912. PubMed ID: 38530140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting non-covalent interactions in selective carbohydrate synthesis.
    Loh CCJ
    Nat Rev Chem; 2021 Nov; 5(11):792-815. PubMed ID: 37117666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting π and Chalcogen Interactions for the β-Selective Glycosylation of Indoles through Glycal Conformational Distortion.
    Guo H; Kirchhoff JL; Strohmann C; Grabe B; Loh CCJ
    Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202316667. PubMed ID: 38116860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noncovalent interactions in proteins and nucleic acids: beyond hydrogen bonding and π-stacking.
    Jena S; Dutta J; Tulsiyan KD; Sahu AK; Choudhury SS; Biswal HS
    Chem Soc Rev; 2022 Jun; 51(11):4261-4286. PubMed ID: 35560317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chalcogen Bonding Catalysis with Phosphonium Chalcogenide (PCH).
    Zhao Z; Wang Y
    Acc Chem Res; 2023 Mar; 56(5):608-621. PubMed ID: 36802469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chalcogen bonding in the solid-state structures of 1,3-bis(benzimidazoliumyl)benzene-based chalcogen-bonding donors.
    Steinke T; Engelage E; Huber SM
    Acta Crystallogr C Struct Chem; 2023 Feb; 79(Pt 2):26-35. PubMed ID: 36739607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular Covalence in Bifurcated Chalcogen Bonding.
    Bora PL; Novák M; Novotný J; Foroutan-Nejad C; Marek R
    Chemistry; 2017 May; 23(30):7315-7323. PubMed ID: 28295669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Assisted Chalcogen Bonding as a New Synthon in the Design of Dyes.
    Gurbanov AV; Kuznetsov ML; Mahmudov KT; Pombeiro AJL; Resnati G
    Chemistry; 2020 Nov; 26(65):14833-14837. PubMed ID: 32567710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual Chalcogen-Chalcogen Bonding Catalysis.
    Wang W; Zhu H; Feng L; Yu Q; Hao J; Zhu R; Wang Y
    J Am Chem Soc; 2020 Feb; 142(6):3117-3124. PubMed ID: 31961148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chalcogen Bonding: An Overview.
    Vogel L; Wonner P; Huber SM
    Angew Chem Int Ed Engl; 2019 Feb; 58(7):1880-1891. PubMed ID: 30225899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling Mechanism of a Quinine-Squaramide Catalyzed Enantioselective Aza-Friedel-Crafts Reaction between Cyclic Trifluoromethyl Ketimine and Naphthol: A DFT Study.
    Wang P; Gao Y; Zhao Y; Liu W; Wang Y
    J Org Chem; 2017 Dec; 82(24):13109-13114. PubMed ID: 29130307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition between chalcogen and halogen bonding assessed through isostructural species.
    De Silva V; Magueres PL; Averkiev BB; Aakeröy CB
    Acta Crystallogr C Struct Chem; 2022 Dec; 78(Pt 12):716-721. PubMed ID: 36468554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chalcogen bonding in solution: interactions of benzotelluradiazoles with anionic and uncharged Lewis bases.
    Garrett GE; Gibson GL; Straus RN; Seferos DS; Taylor MS
    J Am Chem Soc; 2015 Apr; 137(12):4126-33. PubMed ID: 25781631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anion Recognition in Water by Charge-Neutral Halogen and Chalcogen Bonding Foldamer Receptors.
    Borissov A; Marques I; Lim JYC; Félix V; Smith MD; Beer PD
    J Am Chem Soc; 2019 Mar; 141(9):4119-4129. PubMed ID: 30730716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-Halogen Bond Activation by Selenium-Based Chalcogen Bonding.
    Wonner P; Vogel L; Düser M; Gomes L; Kniep F; Mallick B; Werz DB; Huber SM
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):12009-12012. PubMed ID: 28605080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Noncovalent Chalcogen-Chalcogen Interactions to Supramolecular Aggregates: Experiments and Calculations.
    Gleiter R; Haberhauer G; Werz DB; Rominger F; Bleiholder C
    Chem Rev; 2018 Feb; 118(4):2010-2041. PubMed ID: 29420879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chalcogen Bonding Macrocycles and [2]Rotaxanes for Anion Recognition.
    Lim JY; Marques I; Thompson AL; Christensen KE; Félix V; Beer PD
    J Am Chem Soc; 2017 Mar; 139(8):3122-3133. PubMed ID: 28140582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.