These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 38032915)

  • 1. CLAHE-CapsNet: Efficient retina optical coherence tomography classification using capsule networks with contrast limited adaptive histogram equalization.
    Opoku M; Weyori BA; Adekoya AF; Adu K
    PLoS One; 2023; 18(11):e0288663. PubMed ID: 38032915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HTC-retina: A hybrid retinal diseases classification model using transformer-Convolutional Neural Network from optical coherence tomography images.
    Laouarem A; Kara-Mohamed C; Bourennane EB; Hamdi-Cherif A
    Comput Biol Med; 2024 Aug; 178():108726. PubMed ID: 38878400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stitched vision transformer for age-related macular degeneration detection using retinal optical coherence tomography images.
    Azizi MM; Abhari S; Sajedi H
    PLoS One; 2024; 19(6):e0304943. PubMed ID: 38837967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An enhanced OCT image captioning system to assist ophthalmologists in detecting and classifying eye diseases.
    Vellakani S; Pushbam I
    J Xray Sci Technol; 2020; 28(5):975-988. PubMed ID: 32597828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OctNET: A Lightweight CNN for Retinal Disease Classification from Optical Coherence Tomography Images.
    A P S; Kar S; S G; Gopi VP; Palanisamy P
    Comput Methods Programs Biomed; 2021 Mar; 200():105877. PubMed ID: 33339630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fusion of deep neural networks and game theory for retinal disease diagnosis with OCT images.
    Vishnu Priyan S; Vinod Kumar R; Moorthy C; Nishok VS
    J Xray Sci Technol; 2024; 32(4):1011-1039. PubMed ID: 38759091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-scale convolutional neural network for automated AMD classification using retinal OCT images.
    Sotoudeh-Paima S; Jodeiri A; Hajizadeh F; Soltanian-Zadeh H
    Comput Biol Med; 2022 May; 144():105368. PubMed ID: 35259614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence Tomography Image Classification.
    Fang L; Wang C; Li S; Rabbani H; Chen X; Liu Z
    IEEE Trans Med Imaging; 2019 Aug; 38(8):1959-1970. PubMed ID: 30763240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of optical coherence tomography images using a capsule network.
    Tsuji T; Hirose Y; Fujimori K; Hirose T; Oyama A; Saikawa Y; Mimura T; Shiraishi K; Kobayashi T; Mizota A; Kotoku J
    BMC Ophthalmol; 2020 Mar; 20(1):114. PubMed ID: 32192460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hybrid Model Composed of Two Convolutional Neural Networks (CNNs) for Automatic Retinal Layer Segmentation of OCT Images in Retinitis Pigmentosa (RP).
    Wang YZ; Wu W; Birch DG
    Transl Vis Sci Technol; 2021 Nov; 10(13):9. PubMed ID: 34751740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surrogate-Assisted Retinal OCT Image Classification Based on Convolutional Neural Networks.
    Rong Y; Xiang D; Zhu W; Yu K; Shi F; Fan Z; Chen X
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):253-263. PubMed ID: 29994378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Residual Network for Diagnosis of Retinal Diseases Using Optical Coherence Tomography Images.
    Asif S; Amjad K; Qurrat-Ul-Ain
    Interdiscip Sci; 2022 Dec; 14(4):906-916. PubMed ID: 35767116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial intelligence based detection of age-related macular degeneration using optical coherence tomography with unique image preprocessing.
    Celebi ARC; Bulut E; Sezer A
    Eur J Ophthalmol; 2023 Jan; 33(1):65-73. PubMed ID: 35469472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks.
    Zhang T; Wei Q; Li Z; Meng W; Zhang M; Zhang Z
    Comput Methods Programs Biomed; 2023 Oct; 240():107632. PubMed ID: 37329802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new computer-aided diagnosis tool based on deep learning methods for automatic detection of retinal disorders from OCT images.
    Alizadeh Eghtedar R; Vard A; Malekahmadi M; Peyman A
    Int Ophthalmol; 2024 Feb; 44(1):110. PubMed ID: 38396074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the proposed DCNN model with standard CNN architectures for retinal diseases classification.
    Mohan R; Ganapathy K; Arunmozhi R
    J Popul Ther Clin Pharmacol; 2022; 29(3):e112-e122. PubMed ID: 36196946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Imaging Examination Based on Deep Learning in the Diagnosis of Viral Senile Pneumonia.
    Deng X; Ge X; Xue Q; Liu H
    Contrast Media Mol Imaging; 2022; 2022():6964283. PubMed ID: 35694707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images.
    Alqudah AM
    Med Biol Eng Comput; 2020 Jan; 58(1):41-53. PubMed ID: 31728935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular deep neural networks for automatic quality control of retinal optical coherence tomography scans.
    Kauer-Bonin J; Yadav SK; Beckers I; Gawlik K; Motamedi S; Zimmermann HG; Kadas EM; Haußer F; Paul F; Brandt AU
    Comput Biol Med; 2022 Feb; 141():104822. PubMed ID: 34548173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.