These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38032946)

  • 1. Fractional-order numerical modeling to study chloride ion transport in concrete with fly ash or slag additions.
    Zhou L; Huang G; Chen R
    PLoS One; 2023; 18(11):e0294858. PubMed ID: 38032946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride Diffusion in Concrete Made with Coal Fly Ash Ternary and Ground Granulated Blast-Furnace Slag Portland Cements.
    Sanjuán MÁ; Rivera RA; Martín DA; Estévez E
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes.
    Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH
    PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Fly Ash Additive on the Properties of Concrete with Slag Cement.
    Szcześniak A; Zychowicz J; Stolarski A
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32717849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical Strength and Chloride Ions' Penetration of Alkali-Activated Concretes (AAC) with Blended Precursor.
    Duży P; Choinska M; Hager I; Amiri O; Claverie J
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation Approach for Random Diffusion of Chloride in Concrete under Sustained Load with Cellular Automata.
    Ma J; Lin P
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures.
    Glinicki MA; Jóźwiak-Niedźwiedzka D; Gibas K; Dąbrowski M
    Materials (Basel); 2016 Jan; 9(1):. PubMed ID: 28787821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical order of influence of mix variables affecting compressive strength of sustainable concrete containing fly ash, copper slag, silica fume, and fibres.
    Natarajan S; Karuppiah G
    ScientificWorldJournal; 2014; 2014():646840. PubMed ID: 24707213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash.
    Nguyen TC; Loganathan P; Nguyen TV; Kandasamy J; Naidu R; Vigneswaran S
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20430-20438. PubMed ID: 28707235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete.
    Ahmed HU; Mohammed AA; Mohammed A
    PLoS One; 2022; 17(5):e0265846. PubMed ID: 35613110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkali-activated concrete with Serbian fly ash and its radiological impact.
    Nuccetelli C; Trevisi R; Ignjatović I; Dragaš J
    J Environ Radioact; 2017 Mar; 168():30-37. PubMed ID: 27686949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Various Fly Ash and Ground Granulated Blast Furnace Slag Content on Concrete Properties: Experiments and Modelling.
    Qu Z; Liu Z; Si R; Zhang Y
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bonding Behavior of Repair Material using Fly-Ash/Ground Granulated Blast Furnace Slag-Based Geopolymer.
    Kuo WT; Liu MY; Juang CU
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31137739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of Ground Granulated Blast-Furnace Slag and Coal Fly Ash Ternary Portland Cements Exposed to Natural Carbonation.
    Rivera RA; Sanjuán MÁ; Martín DA; Costafreda JL
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34208389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Study on Chloride Binding Capacity of Cement-Fly Ash System and Cement-Ground Granulated Blast Furnace Slag System with Diethanol-Isopropanolamine.
    Liu H; Zhang Y; Liu J; Feng Z; Kong S
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32947793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ageing factor for fly ash cement concrete (FACC).
    Pathan QAA; Qureshi AS; Mangi SA
    Environ Sci Pollut Res Int; 2022 May; 29(21):32238-32245. PubMed ID: 35013957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Investigation and Analytical Modeling of Chloride Diffusivity of Fly Ash Concrete.
    Zhang J; Zhou XZ; Zheng JJ; Ye HL; Yang J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32074996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-term time fractional diffusion equations and novel parameter estimation techniques for chloride ions sub-diffusion in reinforced concrete.
    Chen R; Wei X; Liu F; Anh VV
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2172):20190538. PubMed ID: 32389078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Dechlorination Experiment Design Using Lightweight Deep Learning Model.
    Peng J; Tan H
    Comput Intell Neurosci; 2022; 2022():1623462. PubMed ID: 35789615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of Sustainable Fly Ash and Slag Cement Mortars Exposed to Simulated and Real In Situ Mediterranean Conditions along 90 Warm Season Days.
    Ortega JM; Esteban MD; Sánchez I; Climent MÁ
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29088107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.