These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38033189)
1. Deep learning-based automatic segmentation of bone graft material after maxillary sinus augmentation. Tao B; Xu J; Gao J; He S; Jiang S; Wang F; Chen X; Wu Y Clin Oral Implants Res; 2024 Aug; 35(8):964-972. PubMed ID: 38033189 [TBL] [Abstract][Full Text] [Related]
2. Deep learning-based fully automatic segmentation of the maxillary sinus on cone-beam computed tomographic images. Choi H; Jeon KJ; Kim YH; Ha EG; Lee C; Han SS Sci Rep; 2022 Aug; 12(1):14009. PubMed ID: 35978086 [TBL] [Abstract][Full Text] [Related]
3. A deep learning-based automatic segmentation of zygomatic bones from cone-beam computed tomography images: A proof of concept. Tao B; Yu X; Wang W; Wang H; Chen X; Wang F; Wu Y J Dent; 2023 Aug; 135():104582. PubMed ID: 37321334 [TBL] [Abstract][Full Text] [Related]
4. Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography. Verhelst PJ; Smolders A; Beznik T; Meewis J; Vandemeulebroucke A; Shaheen E; Van Gerven A; Willems H; Politis C; Jacobs R J Dent; 2021 Nov; 114():103786. PubMed ID: 34425172 [TBL] [Abstract][Full Text] [Related]
5. Artificial intelligence system for automatic maxillary sinus segmentation on cone beam computed tomography images. Bayrakdar IS; Elfayome NS; Hussien RA; Gulsen IT; Kuran A; Gunes I; Al-Badr A; Celik O; Orhan K Dentomaxillofac Radiol; 2024 Apr; 53(4):256-266. PubMed ID: 38502963 [TBL] [Abstract][Full Text] [Related]
6. Quantitative comparison of cone beam computed tomography and microradiography in the evaluation of bone density after maxillary sinus augmentation: a preliminary study. Soardi CM; Zaffe D; Motroni A; Wang HL Clin Implant Dent Relat Res; 2014 Aug; 16(4):557-64. PubMed ID: 23157713 [TBL] [Abstract][Full Text] [Related]
7. Comparison of 2D, 2.5D, and 3D segmentation networks for maxillary sinuses and lesions in CBCT images. Yoo YS; Kim D; Yang S; Kang SR; Kim JE; Huh KH; Lee SS; Heo MS; Yi WJ BMC Oral Health; 2023 Nov; 23(1):866. PubMed ID: 37964229 [TBL] [Abstract][Full Text] [Related]
8. SinusC-Net for automatic classification of surgical plans for maxillary sinus augmentation using a 3D distance-guided network. Hwang IK; Kang SR; Yang S; Kim JM; Kim JE; Huh KH; Lee SS; Heo MS; Yi WJ; Kim TI Sci Rep; 2023 Jul; 13(1):11653. PubMed ID: 37468515 [TBL] [Abstract][Full Text] [Related]
9. Surgeons' Performance Determining the Amount of Graft Material for Sinus Floor Augmentation Using Tomography. Cruz AD; Peixoto GA; Aguiar MF; Camargo GACG; Homs N Braz Dent J; 2017; 28(3):385-390. PubMed ID: 29297561 [TBL] [Abstract][Full Text] [Related]
10. Changes in bone graft height and influencing factors after sinus floor augmentation by using the lateral window approach: A clinical retrospective study of 1 to 2 years. Guan X; Zhang J; Chen Y; Han J; Yu M; Zhou Y J Prosthet Dent; 2023 Sep; 130(3):362-368. PubMed ID: 34857390 [TBL] [Abstract][Full Text] [Related]
11. Convolutional neural network for automatic maxillary sinus segmentation on cone-beam computed tomographic images. Morgan N; Van Gerven A; Smolders A; de Faria Vasconcelos K; Willems H; Jacobs R Sci Rep; 2022 May; 12(1):7523. PubMed ID: 35525857 [TBL] [Abstract][Full Text] [Related]
12. Implant success remains high despite grafting voids in the maxillary sinus. Tsai CY; Garaicoa-Pazmino C; Mori K; Benavides E; Kaigler D; Kapila Y Clin Oral Implants Res; 2015 Apr; 26(4):447-453. PubMed ID: 24720484 [TBL] [Abstract][Full Text] [Related]
13. Bone Graft Displacement After Maxillary Sinus Floor Augmentation With or Without Covering Barrier Membrane: A Retrospective Computed Tomographic Image Evaluation. Ohayon L; Taschieri S; Friedmann A; Del Fabbro M Int J Oral Maxillofac Implants; 2019; 34(3):681–691. PubMed ID: 30521657 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of maxillary sinus findings after dental implant and sinus floor augmentation procedures with cone-beam computed tomography. Karslioglu H; Sumer AP Niger J Clin Pract; 2020 Oct; 23(10):1477-1482. PubMed ID: 33047709 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional volumetric analysis after sinus grafts. Kim ES; Moon SY; Kim SG; Park HC; Oh JS Implant Dent; 2013 Apr; 22(2):170-4. PubMed ID: 23399787 [TBL] [Abstract][Full Text] [Related]
16. A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study. Shaheen E; Leite A; Alqahtani KA; Smolders A; Van Gerven A; Willems H; Jacobs R J Dent; 2021 Dec; 115():103865. PubMed ID: 34710545 [TBL] [Abstract][Full Text] [Related]
17. Deep learning-based segmentation of dental implants on cone-beam computed tomography images: A validation study. Elgarba BM; Van Aelst S; Swaity A; Morgan N; Shujaat S; Jacobs R J Dent; 2023 Oct; 137():104639. PubMed ID: 37517787 [TBL] [Abstract][Full Text] [Related]
18. Automatic maxillary sinus segmentation and pathology classification on cone-beam computed tomographic images using deep learning. Altun O; Özen DÇ; Duman ŞB; Dedeoğlu N; Bayrakdar İŞ; Eşer G; Çelik Ö; Sümbüllü MA; Syed AZ BMC Oral Health; 2024 Oct; 24(1):1208. PubMed ID: 39390490 [TBL] [Abstract][Full Text] [Related]
19. Cone Beam Computed Tomography Assessment of Maxillary Sinus Floor Augmentation Using Beta-Tricalcium Phosphate Alone or in Combination with Platelet-Rich Plasma: A Randomized Clinical Trial. Kiliç SC; Güngörmüş M Int J Oral Maxillofac Implants; 2016; 31(6):1367-1375. PubMed ID: 27861663 [TBL] [Abstract][Full Text] [Related]
20. Influence of dental fillings and tooth type on the performance of a novel artificial intelligence-driven tool for automatic tooth segmentation on CBCT images - A validation study. Fontenele RC; Gerhardt MDN; Pinto JC; Van Gerven A; Willems H; Jacobs R; Freitas DQ J Dent; 2022 Apr; 119():104069. PubMed ID: 35183696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]