BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38033190)

  • 1. Stimuli-Responsive Boronate Formation to Control Nucleic Acid-Based Functional Architectures.
    Smietana M; Müller S
    Chempluschem; 2024 Feb; 89(2):e202300613. PubMed ID: 38033190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boronic Acid Assisted Self-Assembly of Functional RNAs.
    Lelièvre-Büttner A; Schnarr T; Debiais M; Smietana M; Müller S
    Chemistry; 2023 Jun; 29(35):e202300196. PubMed ID: 36999672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of the Reversible Boronic Acids/Boronate Switch to Nucleic Acids.
    Debiais M; Vasseur JJ; Smietana M
    Chem Rec; 2022 Aug; 22(8):e202200085. PubMed ID: 35641415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and NMR characterization of reversible head-to-tail boronate-linked macrocyclic nucleic acids.
    Debiais M; Gimenez Molina A; Müller S; Vasseur JJ; Barvik I; Baraguey C; Smietana M
    Org Biomol Chem; 2022 Apr; 20(14):2889-2895. PubMed ID: 35319560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly.
    Bull SD; Davidson MG; van den Elsen JM; Fossey JS; Jenkins AT; Jiang YB; Kubo Y; Marken F; Sakurai K; Zhao J; James TD
    Acc Chem Res; 2013 Feb; 46(2):312-26. PubMed ID: 23148559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boronic Acid-Mediated Activity Control of Split 10-23 DNAzymes.
    Debiais M; Lelievre A; Vasseur JJ; Müller S; Smietana M
    Chemistry; 2021 Jan; 27(3):1138-1144. PubMed ID: 33058268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-based boronate internucleosidic linkages: an entry into reversible templated ligation and loop formation.
    Gimenez Molina A; Barvik I; Müller S; Vasseur JJ; Smietana M
    Org Biomol Chem; 2018 Nov; 16(45):8824-8830. PubMed ID: 30411775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of photometric sensors for boronic acids.
    Springsteen G; Ballard CE; Gao S; Wang W; Wang B
    Bioorg Chem; 2001 Oct; 29(5):259-70. PubMed ID: 16256696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal reaction mechanism of boronic acids with diols in aqueous solution: kinetics and the basic concept of a conditional formation constant.
    Furikado Y; Nagahata T; Okamoto T; Sugaya T; Iwatsuki S; Inamo M; Takagi HD; Odani A; Ishihara K
    Chemistry; 2014 Oct; 20(41):13194-202. PubMed ID: 25169423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boronate affinity materials for separation and molecular recognition: structure, properties and applications.
    Li D; Chen Y; Liu Z
    Chem Soc Rev; 2015 Nov; 44(22):8097-123. PubMed ID: 26377373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible click reactions with boronic acids to build supramolecular architectures in water.
    Arzt M; Seidler C; Ng DY; Weil T
    Chem Asian J; 2014 Aug; 9(8):1994-2003. PubMed ID: 24764166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoselective formation of trisubstituted vinyl boronate esters by the acid-mediated elimination of α-hydroxyboronate esters.
    Guan W; Michael AK; McIntosh ML; Koren-Selfridge L; Scott JP; Clark TB
    J Org Chem; 2014 Aug; 79(15):7199-204. PubMed ID: 24915498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connecting the dynamics and reactivity of arylboronic acids to emergent and stimuli-responsive material properties.
    Han GS; Domaille DW
    J Mater Chem B; 2022 Aug; 10(33):6263-6278. PubMed ID: 35916144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decarboxylative borylation.
    Li C; Wang J; Barton LM; Yu S; Tian M; Peters DS; Kumar M; Yu AW; Johnson KA; Chatterjee AK; Yan M; Baran PS
    Science; 2017 Jun; 356(6342):. PubMed ID: 28408721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of fluorophenylboronic acid-functionalized affinity monolithic columns for the selective enrichment of cis-diol-containing biomolecules.
    Li Q; Liu Z
    Methods Mol Biol; 2015; 1286():159-69. PubMed ID: 25749953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and Applications of Boronate Affinity Materials: From Class Selectivity to Biomimetic Specificity.
    Liu Z; He H
    Acc Chem Res; 2017 Sep; 50(9):2185-2193. PubMed ID: 28849912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenylboronic Acid-polymers for Biomedical Applications.
    Ryu JH; Lee GJ; Shih YV; Kim TI; Varghese S
    Curr Med Chem; 2019; 26(37):6797-6816. PubMed ID: 30295184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free and sensitive strategy for microRNAs detection based on the formation of boronate ester bonds and the dual-amplification of gold nanoparticles.
    Xia N; Zhang L; Wang G; Feng Q; Liu L
    Biosens Bioelectron; 2013 Sep; 47():461-6. PubMed ID: 23624014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observations on the deprotection of pinanediol and pinacol boronate esters via fluorinated intermediates.
    Inglis SR; Woon EC; Thompson AL; Schofield CJ
    J Org Chem; 2010 Jan; 75(2):468-71. PubMed ID: 20014787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mild and rapid hydroxylation of aryl/heteroaryl boronic acids and boronate esters with N-oxides.
    Zhu C; Wang R; Falck JR
    Org Lett; 2012 Jul; 14(13):3494-7. PubMed ID: 22731862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.