These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38033326)

  • 1. Substrate selectivity and catalytic activation of the type III CRISPR ancillary nuclease Can2.
    Jungfer K; Sigg A; Jinek M
    Nucleic Acids Res; 2024 Jan; 52(1):462-473. PubMed ID: 38033326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CRISPR ancillary effector Can2 is a dual-specificity nuclease potentiating type III CRISPR defence.
    Zhu W; McQuarrie S; Grüschow S; McMahon SA; Graham S; Gloster TM; White MF
    Nucleic Acids Res; 2021 Mar; 49(5):2777-2789. PubMed ID: 33590098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage.
    Athukoralage JS; McQuarrie S; Grüschow S; Graham S; Gloster TM; White MF
    Elife; 2020 Jun; 9():. PubMed ID: 32597755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the RNA and DNA nuclease activities required for Pyrococcus furiosus Type III-B CRISPR-Cas immunity.
    Foster K; Grüschow S; Bailey S; White MF; Terns MP
    Nucleic Acids Res; 2020 May; 48(8):4418-4434. PubMed ID: 32198888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of cyclic oligoadenylate degradation by ancillary Type III CRISPR-Cas ring nucleases.
    Molina R; Jensen ALG; Marchena-Hurtado J; López-Méndez B; Stella S; Montoya G
    Nucleic Acids Res; 2021 Dec; 49(21):12577-12590. PubMed ID: 34850143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Csx3 is a cyclic oligonucleotide phosphodiesterase associated with type III CRISPR-Cas that degrades the second messenger cA
    Brown S; Gauvin CC; Charbonneau AA; Burman N; Lawrence CM
    J Biol Chem; 2020 Oct; 295(44):14963-14972. PubMed ID: 32826317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fuse to defuse: a self-limiting ribonuclease-ring nuclease fusion for type III CRISPR defence.
    Samolygo A; Athukoralage JS; Graham S; White MF
    Nucleic Acids Res; 2020 Jun; 48(11):6149-6156. PubMed ID: 32347937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antiviral type III CRISPR signalling via conjugation of ATP and SAM.
    Chi H; Hoikkala V; Grüschow S; Graham S; Shirran S; White MF
    Nature; 2023 Oct; 622(7984):826-833. PubMed ID: 37853119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate.
    Athukoralage JS; Rouillon C; Graham S; Grüschow S; White MF
    Nature; 2018 Oct; 562(7726):277-280. PubMed ID: 30232454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis of stepwise cyclic tetra-adenylate cleavage by the type III CRISPR ring nuclease Crn1/Sso2081.
    Du L; Zhang D; Luo Z; Lin Z
    Nucleic Acids Res; 2023 Mar; 51(5):2485-2495. PubMed ID: 36807980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of cyclic tetra-oligoadenylate processing by small standalone CRISPR-Cas ring nucleases.
    Molina R; Garcia-Martin R; López-Méndez B; Jensen ALG; Ciges-Tomas JR; Marchena-Hurtado J; Stella S; Montoya G
    Nucleic Acids Res; 2022 Oct; 50(19):11199-11213. PubMed ID: 36271789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The SAVED domain of the type III CRISPR protease CalpL is a ring nuclease.
    Binder SC; Schneberger N; Schmitz M; Engeser M; Geyer M; Rouillon C; Hagelueken G
    Nucleic Acids Res; 2024 Sep; 52(17):10520-10532. PubMed ID: 39166476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type III CRISPR-Cas: beyond the Cas10 effector complex.
    Stella G; Marraffini L
    Trends Biochem Sci; 2024 Jan; 49(1):28-37. PubMed ID: 37949766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR antiphage defence mediated by the cyclic nucleotide-binding membrane protein Csx23.
    Grüschow S; McQuarrie S; Ackermann K; McMahon S; Bode BE; Gloster TM; White MF
    Nucleic Acids Res; 2024 Apr; 52(6):2761-2775. PubMed ID: 38471818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity.
    Athukoralage JS; McMahon SA; Zhang C; Grüschow S; Graham S; Krupovic M; Whitaker RJ; Gloster TM; White MF
    Nature; 2020 Jan; 577(7791):572-575. PubMed ID: 31942067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Type III CRISPR Ancillary Ribonuclease Degrades Its Cyclic Oligoadenylate Activator.
    Athukoralage JS; Graham S; Grüschow S; Rouillon C; White MF
    J Mol Biol; 2019 Jul; 431(15):2894-2899. PubMed ID: 31071326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of cyclic oligoadenylate synthesis by the
    Nasef M; Muffly MC; Beckman AB; Rowe SJ; Walker FC; Hatoum-Aslan A; Dunkle JA
    RNA; 2019 Aug; 25(8):948-962. PubMed ID: 31076459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The diverse arsenal of type III CRISPR-Cas-associated CARF and SAVED effectors.
    Steens JA; Salazar CRP; Staals RHJ
    Biochem Soc Trans; 2022 Oct; 50(5):1353-1364. PubMed ID: 36282000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic.
    Nemudraia A; Nemudryi A; Buyukyoruk M; Scherffius AM; Zahl T; Wiegand T; Pandey S; Nichols JE; Hall LN; McVey A; Lee HH; Wilkinson RA; Snyder LR; Jones JD; Koutmou KS; Santiago-Frangos A; Wiedenheft B
    Nat Commun; 2022 Dec; 13(1):7762. PubMed ID: 36522348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems.
    Foster K; Kalter J; Woodside W; Terns RM; Terns MP
    RNA Biol; 2019 Apr; 16(4):449-460. PubMed ID: 29995577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.