These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38033326)

  • 21. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
    Fonfara I; Richter H; Bratovič M; Le Rhun A; Charpentier E
    Nature; 2016 Apr; 532(7600):517-21. PubMed ID: 27096362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis of cyclic oligoadenylate binding to the transcription factor Csa3 outlines cross talk between type III and type I CRISPR systems.
    Xia P; Dutta A; Gupta K; Batish M; Parashar V
    J Biol Chem; 2022 Feb; 298(2):101591. PubMed ID: 35038453
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding.
    Han W; Stella S; Zhang Y; Guo T; Sulek K; Peng-Lundgren L; Montoya G; She Q
    Nucleic Acids Res; 2018 Nov; 46(19):10319-10330. PubMed ID: 30239876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and mechanism of a Type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate.
    McMahon SA; Zhu W; Graham S; Rambo R; White MF; Gloster TM
    Nat Commun; 2020 Jan; 11(1):500. PubMed ID: 31980625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic.
    Nemudraia A; Nemudryi A; Buyukyoruk M; Scherffius AM; Zahl T; Wiegand T; Pandey S; Nichols JE; Hall L; McVey A; Lee HH; Wilkinson RA; Snyder LR; Jones JD; Koutmou KS; Santiago-Frangos A; Wiedenheft B
    Res Sq; 2022 Apr; ():. PubMed ID: 35475170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyclic Tetra-Adenylate (cA
    Charbonneau AA; Eckert DM; Gauvin CC; Lintner NG; Lawrence CM
    Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Critical roles for 'housekeeping' nucleases in type III CRISPR-Cas immunity.
    Chou-Zheng L; Hatoum-Aslan A
    Elife; 2022 Dec; 11():. PubMed ID: 36479971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
    Yang H; Patel DJ
    Mol Cell; 2017 Jul; 67(1):117-127.e5. PubMed ID: 28602637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation and self-inactivation mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6.
    Garcia-Doval C; Schwede F; Berk C; Rostøl JT; Niewoehner O; Tejero O; Hall J; Marraffini LA; Jinek M
    Nat Commun; 2020 Mar; 11(1):1596. PubMed ID: 32221291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic oligoadenylate signalling and regulation by ring nucleases during type III CRISPR defence.
    Athukoralage JS; White MF
    RNA; 2021 May; 27(8):855-67. PubMed ID: 33986148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structures of an active type III-A CRISPR effector complex.
    Smith EM; Ferrell S; Tokars VL; Mondragón A
    Structure; 2022 Aug; 30(8):1109-1128.e6. PubMed ID: 35714601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers.
    Niewoehner O; Garcia-Doval C; Rostøl JT; Berk C; Schwede F; Bigler L; Hall J; Marraffini LA; Jinek M
    Nature; 2017 Aug; 548(7669):543-548. PubMed ID: 28722012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular mechanism of allosteric activation of the CRISPR ribonuclease Csm6 by cyclic tetra-adenylate.
    Du L; Zhu Q; Lin Z
    EMBO J; 2024 Jan; 43(2):304-315. PubMed ID: 38177499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure Studies of the CRISPR-Csm Complex Reveal Mechanism of Co-transcriptional Interference.
    You L; Ma J; Wang J; Artamonova D; Wang M; Liu L; Xiang H; Severinov K; Zhang X; Wang Y
    Cell; 2019 Jan; 176(1-2):239-253.e16. PubMed ID: 30503210
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Approaches to study CRISPR RNA biogenesis and the key players involved.
    Behler J; Hess WR
    Methods; 2020 Feb; 172():12-26. PubMed ID: 31325492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Card1 nuclease provides defence during type III CRISPR immunity.
    Rostøl JT; Xie W; Kuryavyi V; Maguin P; Kao K; Froom R; Patel DJ; Marraffini LA
    Nature; 2021 Feb; 590(7847):624-629. PubMed ID: 33461211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A type III-A CRISPR-Cas system employs degradosome nucleases to ensure robust immunity.
    Chou-Zheng L; Hatoum-Aslan A
    Elife; 2019 Apr; 8():. PubMed ID: 30942690
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3.
    Gong B; Shin M; Sun J; Jung CH; Bolt EL; van der Oost J; Kim JS
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16359-64. PubMed ID: 25368186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymatic properties of CARF-domain proteins in
    Ding J; Schuergers N; Baehre H; Wilde A
    Front Microbiol; 2022; 13():1046388. PubMed ID: 36419420
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of Csx1-cOA
    Molina R; Stella S; Feng M; Sofos N; Jauniskis V; Pozdnyakova I; López-Méndez B; She Q; Montoya G
    Nat Commun; 2019 Sep; 10(1):4302. PubMed ID: 31541109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.