These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 38033395)

  • 1. Next-Generation Microfluidics for Biomedical Research and Healthcare Applications.
    Deliorman M; Ali DS; Qasaimeh MA
    Biomed Eng Comput Biol; 2023; 14():11795972231214387. PubMed ID: 38033395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.
    Alapan Y; Hasan MN; Shen R; Gurkan UA
    J Nanotechnol Eng Med; 2015 May; 6(2):. PubMed ID: 27512530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Integration, Wearable Applications, and Artificial Intelligence of Biomedical Microfluidics Systems.
    Ma X; Guo G; Wu X; Wu Q; Liu F; Zhang H; Shi N; Guan Y
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printed microfluidics: advances in strategies, integration, and applications.
    Su R; Wang F; McAlpine MC
    Lab Chip; 2023 Mar; 23(5):1279-1299. PubMed ID: 36779387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Next generation human skin constructs as advanced tools for drug development.
    Abaci HE; Guo Z; Doucet Y; Jacków J; Christiano A
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1657-1668. PubMed ID: 28592171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bridging the Gap: Integrating 3D Bioprinting and Microfluidics for Advanced Multi-Organ Models in Biomedical Research.
    De Spirito M; Palmieri V; Perini G; Papi M
    Bioengineering (Basel); 2024 Jun; 11(7):. PubMed ID: 39061746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging 3D printing technologies and methodologies for microfluidic development.
    Monia Kabandana GK; Zhang T; Chen C
    Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in microfluidic technology of arterial thrombosis investigations.
    Lin J; Chen S; Zhang C; Liao J; Chen Y; Deng S; Mao Z; Zhang T; Tian N; Song Y; Zeng T
    Platelets; 2024 Dec; 35(1):2316743. PubMed ID: 38390892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microsystem Advances through Integration with Artificial Intelligence.
    Tsai HF; Podder S; Chen PY
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput microfluidic systems accelerated by artificial intelligence for biomedical applications.
    Zhou J; Dong J; Hou H; Huang L; Li J
    Lab Chip; 2024 Feb; 24(5):1307-1326. PubMed ID: 38247405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system.
    Riester O; Laufer S; Deigner HP
    J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics.
    Jang J; Park JY; Gao G; Cho DW
    Biomaterials; 2018 Feb; 156():88-106. PubMed ID: 29190501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancing 3D printed microfluidics with computational methods for sweat analysis.
    Ece E; Ölmez K; Hacıosmanoğlu N; Atabay M; Inci F
    Mikrochim Acta; 2024 Feb; 191(3):162. PubMed ID: 38411762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic potential of stem cells and microfluidics in regenerative medicine.
    Rajalekshmi R; Agrawal DK
    Mol Cell Biochem; 2024 Sep; ():. PubMed ID: 39285093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tiny Organs, Big Impact: How Microfluidic Organ-on-Chip Technology Is Revolutionizing Mucosal Tissues and Vasculature.
    Dasgupta I; Rangineni DP; Abdelsaid H; Ma Y; Bhushan A
    Bioengineering (Basel); 2024 May; 11(5):. PubMed ID: 38790343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips.
    Kotz F; Helmer D; Rapp BE
    Adv Biochem Eng Biotechnol; 2022; 179():37-66. PubMed ID: 32797271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microengineered Organ-on-a-chip Platforms towards Personalized Medicine.
    Kankala RK; Wang SB; Chen AZ
    Curr Pharm Des; 2018; 24(45):5354-5366. PubMed ID: 30799783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printed Polymer Piezoelectric Materials: Transforming Healthcare through Biomedical Applications.
    Ali F; Koc M
    Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine.
    Osouli-Bostanabad K; Masalehdan T; Kapsa RMI; Quigley A; Lalatsa A; Bruggeman KF; Franks SJ; Williams RJ; Nisbet DR
    ACS Biomater Sci Eng; 2022 Jul; 8(7):2764-2797. PubMed ID: 35696306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.