These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38033535)

  • 41. Clenching-Related Motion Artifacts in Functional Near-Infrared Spectroscopy in the Auditory Cortex.
    Zhang F; Reid A; Schroeder A; Cutter M; Kim K; Ding L; Yuan H
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4649-4652. PubMed ID: 36086024
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Temporal Derivative Distribution Repair (TDDR): A motion correction method for fNIRS.
    Fishburn FA; Ludlum RS; Vaidya CJ; Medvedev AV
    Neuroimage; 2019 Jan; 184():171-179. PubMed ID: 30217544
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hand Motion Detection in fNIRS Neuroimaging Data.
    Abtahi M; Amiri AM; Byrd D; Mankodiya K
    Healthcare (Basel); 2017 Apr; 5(2):. PubMed ID: 28420129
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deep learning-based motion quantification from k-space for fast model-based magnetic resonance imaging motion correction.
    Hossbach J; Splitthoff DN; Cauley S; Clifford B; Polak D; Lo WC; Meyer H; Maier A
    Med Phys; 2023 Apr; 50(4):2148-2161. PubMed ID: 36433748
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review.
    Khan H; Naseer N; Yazidi A; Eide PK; Hassan HW; Mirtaheri P
    Front Hum Neurosci; 2020; 14():613254. PubMed ID: 33568979
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Investigating deep learning for fNIRS based BCI.
    Hennrich J; Herff C; Heger D; Schultz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2844-7. PubMed ID: 26736884
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CGAN-rIRN: a data-augmented deep learning approach to accurate classification of mental tasks for a fNIRS-based brain-computer interface.
    Zhang Y; Liu D; Li T; Zhang P; Li Z; Gao F
    Biomed Opt Express; 2023 Jun; 14(6):2934-2954. PubMed ID: 37342712
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Revealing the spatiotemporal requirements for accurate subject identification with resting-state functional connectivity: a simultaneous fNIRS-fMRI study.
    Novi SL; Carvalho AC; Forti RM; Cendes F; Yasuda CL; Mesquita RC
    Neurophotonics; 2023 Jan; 10(1):013510. PubMed ID: 36756003
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Motion artifact correction for resting-state neonatal functional near-infrared spectroscopy through adaptive estimation of physiological oscillation denoising.
    Yang M; Xia M; Zhang S; Wu D; Li D; Hou X; Wang D
    Neurophotonics; 2022 Oct; 9(4):045002. PubMed ID: 36284541
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measures of prefrontal functional near-infrared spectroscopy in visuomotor learning.
    Tinga AM; Clim MA; de Back TT; Louwerse MM
    Exp Brain Res; 2021 Apr; 239(4):1061-1072. PubMed ID: 33528598
    [TBL] [Abstract][Full Text] [Related]  

  • 51. LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI.
    Gulraiz A; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408190
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A deep learning method for eliminating head motion artifacts in computed tomography.
    Su B; Wen Y; Liu Y; Liao S; Fu J; Quan G; Li Z
    Med Phys; 2022 Jan; 49(1):411-419. PubMed ID: 34786714
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Domain adaptation for robust workload level alignment between sessions and subjects using fNIRS.
    Lyu B; Pham T; Blaney G; Haga Z; Sassaroli A; Fantini S; Aeron S
    J Biomed Opt; 2021 Jan; 26(2):. PubMed ID: 33415849
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Using the General Linear Model to Improve Performance in fNIRS Single Trial Analysis and Classification: A Perspective.
    von Lühmann A; Ortega-Martinez A; Boas DA; Yücel MA
    Front Hum Neurosci; 2020; 14():30. PubMed ID: 32132909
    [TBL] [Abstract][Full Text] [Related]  

  • 55. fNIRS is sensitive to leg activity in the primary motor cortex after systemic artifact correction.
    Cockx H; Oostenveld R; Tabor M; Savenco E; van Setten A; Cameron I; van Wezel R
    Neuroimage; 2023 Apr; 269():119880. PubMed ID: 36693595
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Current Status and Issues Regarding Pre-processing of fNIRS Neuroimaging Data: An Investigation of Diverse Signal Filtering Methods Within a General Linear Model Framework.
    Pinti P; Scholkmann F; Hamilton A; Burgess P; Tachtsidis I
    Front Hum Neurosci; 2018; 12():505. PubMed ID: 30687038
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Autoregressive model based algorithm for correcting motion and serially correlated errors in fNIRS.
    Barker JW; Aarabi A; Huppert TJ
    Biomed Opt Express; 2013; 4(8):1366-79. PubMed ID: 24009999
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI.
    Erdoğan SB; Yücel MA; Akın A
    Neuroimage; 2014 Feb; 87():490-504. PubMed ID: 24148922
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sensor Location Optimization of Wireless Wearable fNIRS System for Cognitive Workload Monitoring Using a Data-Driven Approach for Improved Wearability.
    Siddiquee MR; Atri R; Marquez JS; Hasan SMS; Ramon R; Bai O
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32906737
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An fNIRS-Based Motor Imagery BCI for ALS: A Subject-Specific Data-Driven Approach.
    Hosni SM; Borgheai SB; McLinden J; Shahriari Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3063-3073. PubMed ID: 33206606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.