These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38033724)

  • 21. Mixing Up the Pieces of the Desferrioxamine B Jigsaw Defines the Biosynthetic Sequence Catalyzed by DesD.
    Telfer TJ; Gotsbacher MP; Soe CZ; Codd R
    ACS Chem Biol; 2016 May; 11(5):1452-62. PubMed ID: 27004785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conjugates of desferrioxamine B (DFOB) with derivatives of adamantane or with orally available chelators as potential agents for treating iron overload.
    Liu J; Obando D; Schipanski LG; Groebler LK; Witting PK; Kalinowski DS; Richardson DR; Codd R
    J Med Chem; 2010 Feb; 53(3):1370-82. PubMed ID: 20041672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accessing Ni(III)-thiolate versus Ni(II)-thiyl bonding in a family of Ni-N2S2 synthetic models of NiSOD.
    Broering EP; Dillon S; Gale EM; Steiner RA; Telser J; Brunold TC; Harrop TC
    Inorg Chem; 2015 Apr; 54(8):3815-28. PubMed ID: 25835183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalytic effects of photogenerated Fe(II) on the ligand-controlled dissolution of Iron(hydr)oxides by EDTA and DFOB.
    Biswakarma J; Kang K; Schenkeveld WDC; Kraemer SM; Hering JG; Hug SJ
    Chemosphere; 2021 Jan; 263():128188. PubMed ID: 33297154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparing the potential renal protective activity of desferrioxamine B and the novel chelator desferrioxamine B-N-(3-hydroxyadamant-1-yl)carboxamide in a cell model of myoglobinuria.
    Groebler LK; Liu J; Shanu A; Codd R; Witting PK
    Biochem J; 2011 May; 435(3):669-77. PubMed ID: 21320071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A nickel superoxide dismutase maquette that reproduces the spectroscopic and functional properties of the metalloenzyme.
    Shearer J; Long LM
    Inorg Chem; 2006 Mar; 45(6):2358-60. PubMed ID: 16529443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural Basis for Xenosiderophore Utilization by the Human Pathogen Staphylococcus aureus.
    Endicott NP; Lee E; Wencewicz TA
    ACS Infect Dis; 2017 Jul; 3(7):542-553. PubMed ID: 28505405
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nickel superoxide dismutase structure and mechanism.
    Barondeau DP; Kassmann CJ; Bruns CK; Tainer JA; Getzoff ED
    Biochemistry; 2004 Jun; 43(25):8038-47. PubMed ID: 15209499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Siderophore-manganese(III) interactions. I. Air-oxidation of manganese(ll) promoted by desferrioxamine B.
    Duckworth OW; Sposito G
    Environ Sci Technol; 2005 Aug; 39(16):6037-44. PubMed ID: 16173561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Chemical Species Change of Radionuclides by Microorganisms: Effects of Exudated Siderophores].
    Ohnuki T
    Yakugaku Zasshi; 2024; 144(6):651-657. PubMed ID: 38825474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct evidence of iron uptake by the Gram-positive siderophore-shuttle mechanism without iron reduction.
    Fukushima T; Allred BE; Raymond KN
    ACS Chem Biol; 2014 Sep; 9(9):2092-100. PubMed ID: 25007174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Role of the Cysteine Fragments of the Nickel Binding Loop in the Activity of the Ni(II)-Containing SOD Enzyme.
    Lihi N; Kelemen D; May NV; Fábián I
    Inorg Chem; 2020 Apr; 59(7):4772-4780. PubMed ID: 32207613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Azido-Desferrioxamine Siderophores as Functional Click-Chemistry Probes Generated in Culture upon Adding a Diazo-Transfer Reagent.
    Gotsbacher MP; Codd R
    Chembiochem; 2020 May; 21(10):1433-1445. PubMed ID: 31863526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic analogues of nickel superoxide dismutase: a new role for nickel in biology.
    Broering EP; Truong PT; Gale EM; Harrop TC
    Biochemistry; 2013 Jan; 52(1):4-18. PubMed ID: 23240653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Semisynthetic Strategy Leads to Alteration of the Backbone Amidate Ligand in the NiSOD Active Site.
    Campeciño JO; Dudycz LW; Tumelty D; Berg V; Cabelli DE; Maroney MJ
    J Am Chem Soc; 2015 Jul; 137(28):9044-52. PubMed ID: 26135142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cr(VI) Reduction by Siderophore Alone and in Combination with Reduced Clay Minerals.
    Zhang D; Liu X; Guo D; Li G; Qu J; Dong H
    Environ Sci Technol; 2022 Sep; 56(17):12315-12324. PubMed ID: 35969222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mononuclear Ni(II) Complexes with a S3O Coordination Sphere Based on a Tripodal Cysteine-Rich Ligand: pH Tuning of the Superoxide Dismutase Activity.
    Domergue J; Pécaut J; Proux O; Lebrun C; Gateau C; Le Goff A; Maldivi P; Duboc C; Delangle P
    Inorg Chem; 2019 Oct; 58(19):12775-12785. PubMed ID: 31545024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dioxygen and superoxide stability of metallopeptide based mimics of nickel containing superoxide dismutase: the influence of amine/amidate vs. bis-amidate ligation.
    Shearer J
    J Inorg Biochem; 2013 Dec; 129():145-9. PubMed ID: 24121677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Role of Mixed Amine/Amide Ligation in Nickel Superoxide Dismutase.
    Huang HT; Dillon S; Ryan KC; Campecino JO; Watkins OE; Cabelli DE; Brunold TC; Maroney MJ
    Inorg Chem; 2018 Oct; 57(20):12521-12535. PubMed ID: 30281299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low concentrations of surfactants enhance siderophore-promoted dissolution of goethite.
    Carrasco N; Kretzschmar R; Pesch ML; Kraemer SM
    Environ Sci Technol; 2007 May; 41(10):3633-8. PubMed ID: 17547189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.